Managing Grazing and Cropping to Regenerate Soil Carbon and Ecosystem Services

University of Alberta, Edmonton 15th February, 2017

Richard Teague, Texas A&M AgriLife Research, Vernon 90% of Soil function is mediated by microbes

Microbes depend on plants

So how we manage plants is critical

Biggest limiting factor in Rangeland Water in the Soil

The Four Ecosystem Processes

- 1. Energy flow Maximize the flow of solar energy through plants and soil.
- 2. Water cycle Maximize capture and cycling of water through plants and soil. Reduce export and import.
- 3. Mineral cycle Maximize cycling of nutrients through plants and soil.
- 4. Community dynamics High ecosystem biodiversity with more complex mixtures and combinations of desirable plant species leads to increased stability and productivity

Landscape impact of continuous grazing

- 1. 39% area used
- 2. 41% GPS points on 9% area
- 3. SR: 21 ac/cow
- 4. Effective SR: 9 ac/cow

Norton 1998; Norton et al. 2013; Jakoby et al. 2014.

Many graziers use Adaptive Multi Paddock (AMP) grazing successfully

Most conservation winners use MP grazing

- Overgrazing has little to do with number of animals.
- But with the amount of time plants are exposed to animals.

Adaptive multi-paddock grazing

Planned multi-paddock grazing

Existing fence

Water point

Restoration using Adaptive MP grazing

Restoration using Adaptive MP grazing

Noble Foundation, Coffey Ranch

Charles Griffith, Hugh Aljoe, Russell Stevens

Managing for Desired Outcomes

- Flexible stocking to match forage availability and animal numbers
- Rotate paddocks to spread grazing over whole ranch one paddock at a time
- Defoliate moderately in growing season
- Use short grazing periods
- Adequate recovery before regrazing
- Adaptively change with changing conditions

Texas Grazing Research

Using AMP grazing 3 Texas ranchers:

- Added 3 tons Carbon /ha/year more than their 3 heavy continuous (HCG) grazing neighbors
- Decreased bare ground
- Improved soil physical structure
- Bolstered soil fertility
- Enriched soil microbial composition
- Improved soil water holding capacity
- Enhanced plant productivity
- Improved plant species composition
- Increased livestock production

Causal Mechanisms

AMP Grazing

No-grazing

Soil health differences due to management

Importance of Microbes and Fungi

- Improve soil structure
- Access and transport nutrients to plants
- Extend root volume and depth
- Produce exudates to enhance soil C
- Mycorrhizal fungi are prime source of stable soil carbon
- Increase water and nutrient retention
- Increase drought resistance
- Fend off pests and pathogens
- Plant growth highest with highest fungal to bacterial ratio

Earthworms in the ecosystem

Dung beetles in the Ecosystem

High density Regenerative AMP grazing

Clear Creek watershed, North Texas

Park et al. 2017

Clear Creek watershed, North Texas

Clear Creek - Streamflow

Clear Creek - Nitrogen load

Clear Creek - Phosphorus load

Alberta Ranches: Stratification, and Pre-sampling

Goal: Measure SOC, water infiltration, and vegetation biodiversity in AMP vs. HCG/LCG managed rangelands.

AMP, HCG, and LCG Site Selection and Pre-Sampling

Paired AMP, HCG, and LCG Soil Catena Sampling

AMP and Carbon 13 Isotope Sampling

Results

- Soil Organic Carbon accrual rates of 1.4 -2.5 tC/ha/yr, higher in AMP vs HCG (P > 0.05, n=60).
- Lowest in sand, highest in clay loam soils.

Infiltration on HCG vs. AMP Grazing - Alberta 2015

2 Dimensions Drive Total Carbon Pool

Using Cover Crops and Grazing to Boost Soil Health and Profits in Cropping Systems

Cover Crops: key to improving soil health

- Cover soil
- Build organic matter
- Build soil aggregates
- Improve water cycle
- Enhance nutrient cycling
- Enhance fertility
- Improve C/N ratio
- Provide crop diversity
- Enhance pollinators
- Wildlife habitat
- Livestock integration

Cover crop with 25 species

Soil Improvements with Regenerative Management

Colin Seis, New South Wales, Australia 2016

Carbon	200%	Silicon	116%
Water holding	+200%	Nitrogen	103%
Calcium	234%	Phosphorous	102%
Magnesium	110%	Potassium	198%
Zinc	250%	Sulfur	92%
Copper	185%	Iron	87%
Boron	150%		

Soil Improvements with Regenerative Management

Gabe Brown, North Dakota 2016
No fertilizer since 2007

Management	N	P	K	WEOC
	Kg/ha			
Organic	2	174	106	261
No-till, low diversity	30	273	152	268
No-till, MD, high syn.	41	243	223	293
No-till, HD, livestock	315	1127	1959	1226

Soil test by Dr. Rick Haney, USDA-ARS, Temple Texas

MD = Medium diversity cover crops

High syn. = High synthetic fertilizer HD = High diversity cover crops

Livestock = Regenerative livestock grazing

WEOC = Water Extractable Organic Carbon

Cropland Soil Health

How different cropping practices affect soil health

Jay Fuhrer, NRCS, North Dakota

Keys to Healthy Soil

- Cover the soil
- High plant diversity
- Minimise soil mechanical disturbance
- Grow plants for maximum days each year
- Manage livestock to enhance soil function
- Use organic soil amendments
- Reduce N-fertilizer use
- Incorporate livestock with regenerative grazing

Marrakech 17th November - 1st FORUM of PARTNERS

Additional organic carbon returns to soils with 4 per 1000 compared to current baseline

Median: +0.89 tC/ha/ yr, that is +2 tDM

(RothC model, inverse mode, bias correction. IIASA, INRA)

Published and Reconnaissance Sampling

AMP Carbon stock gain/year relative to continuous grazing

Carbon Sinks and Emissions:

Northern Plains grazing only Cattle Operations

Life Cycle Analysis of Change in Management

Net C Emissions on grazing only Cow-calf Operations

Grass-fed Cultivated Pasture LCA

Using AMP grazing

Low input system: Breakeven = 1.0 tons Carbon /ha/year

High input system: Breakeven = 2.0 tons Carbon /ha/year

C sequestration in these pastures ~ 3 tons Carbon /ha/year

Rowntree et al. 2017.

Net Emissions with Current Practices and Reduced Ruminants

Net Emissions with Current Cropping and Regenerative Grazing Practices

Net Emissions with <u>Regenerative Cropping</u> and <u>Regenerative Grazing Practices</u>

Hypothesis:

Regenerative Agriculture Improves Farm Economics

