

Miles Dyck

Department of Renewable Resources
University of Alberta

Ackowledgements

Dick Puurveen, Manager, Breton Plots

UofA Breton Plots Endowment and Donors.
 Canadian Fertilizer Institute.

Jim Robertson, Bill McGill

Previous Breton Plots Researchers

Welcome to The Breton Plots: An Alberta Registered Historic Resource

A Research Site for Several Medium- & Long-Term Field Experiments

Gray Luvisol

D. Brown Chernozem

				Classicals						
	F	E	+	D	C		В	A		
	Bly/hay	Wheat(E)-Fallow		Hay-1	Hay-2		Wheat	Oats		
1	Check	Check	O W	Check	Check		Check	Check	1	
2	(Manure)	(Manure)		(Manure)	(Manure)		(Manure)	(Manure)	2	
- 3	50-22-46-20	90-22-46-20		0-22-46-20	0-22-46-20		50-22-46-20	75-22-46-20	3	
4	50-0-46-20	90-0-46-20		0-0-46-20	0-0-46-20		50-0-46-20	75-0-46-20	4	
5	Check	Check		Check	Check		Check	Check	5	
6	Lime	Lime		Lime	Lime		Lime	Lime	6	
7	50-22-46-0	90-22-46-0		0-22-46-0	0-22-46-0		50-22-46-0	75-22-46-0	7	
8	0-22-46-20	0-22-46-20		0-22-46-20	0-22-46-20		0-22-46-20	0-22-46-20	8	
9	50-22-46-20	90-22-46-20)	0-22-46-20	0-22-46-20		50-22-46-20	75-22-46-20	9	
10	50-22-0-20	90-22-0-20		0-22-0-20	0-22-0-20		50-22-0-20	75-22-0-20	10	
11	Check	Check		Check	Check		Check	Check	11	
							Agro-eco			
					2 Barley		5 Bly/hay	CG Barley	13	
	Half plot= 0.01347 ha= 0.0333ac N				m-22-46-20		m-22-46-20	90-22-46-20		
	Whole plot= 0.02694ha= 0.0666ac				CF Fescue		CF Fescue	8 Hay	14	
					17-9-0-16		17-9-0-16	0-22-46-20		
	Plots each 28 ft.X 103.7 ft.				7 Hay		CG Barley	CF Fescue	15	
	Roadways bet	ft.	0-22-46-20		90-22-46-20	17-9-0-16				
	Plot borders 2				6 Нау		1 Barley	3 Fabas	16	
	These latter figures from 1964 revision of plots.				0-22-46-20		m-22-46-20	0-22-46-20		
					CG Barley		CF Fescue	4 Barley	17	
	Rates expressed as elemental N-P-K-S (kg/ha)				90-22-46-20		17-9-0-16	m-22-46-20		
	East half Classicals = Limed; Classical Rotation Sequence: Wheat- Oats -Barley/Hay-Hay-Hay									

Perennials in rotations

- Classial Plots: Alfalfa-Brome
 - year 4 and 5 of 5-year Wheat-Oats-Barley-Hay-Hay
 (WOBHH) rotation
 - year 3 Barley under-seeded to Alfalfa-Brome
 - ploughed under after year 5 harvest
- Hendrigan Plots
 - Hendrigan rotation: continuous creeping red fescue, tall fescue and white "Dutch" clover.
 - 8-year cereal-cereal-fababean-cereal-cereal-hay-hay-hay
 - alfalfa-brome hay

2008 Total C and N

Grant et al. 2001. Long-Term Changes in Soil Carbon under Different Fertilizer, Manure, and Rotation. Soil Sci. Soc. Am. J. 65:205-214.

C sequestration in WOBHH

Giweta, M., M. F. Dyck, S. S. Malhi and D. Puurveen. Long-term S-fertilization increases carbon sequestration in a sulfur-deficient soil. Can. J. Soil Sci.. 94:1-7. 2014

- NPKS \rightarrow 0.0135 % yr⁻¹ \sim 0.28 Mg C ha⁻¹ yr⁻¹
- NPK \rightarrow 0.0084 % yr⁻¹ ~ 0.18 Mg C ha⁻¹ yr⁻¹

 don't have reliable estimates for CF, CW, and Agroecological rotation, but we have archived samples from 1980, 2003, 2008, 2013

2013, 2014 Growing Season cumulative N₂O emissions

discussion

- source of N₂O fluxes include fertilizers, biologically fixed N, previous crop residues
- Farrell et al. $(2014)^* \rightarrow \text{more N}_2\text{O from crop}$ residues than from fertilizer (lab incubation)
- including perennials in rotations (2 5 years) increases soil carbon, but requires intermittent disturbance stimulates nitrification and N₂O emissions

^{*}Farrell, R. E., J. Carvehill, R. Lemke and J. D. Knight. 2014. Partitioning residue-induced emissions of N2O using ¹⁵N labelled crop residues. AGU 2014 Annual meeting.

discussion cont'd

- may not be the same relationship between total soil carbon and N₂O emissions in "permanent" perennial cover and/or other soil types. If there is a land use change in the future, there is potential for increase N₂O emissions at that time which needs to be included in the C balance
- more efficient nutrient cycling at Breton (Gray Luvisol) compared to Ellerslie (Black Chernozem)
 - twice as much C and N mineralization per total soil C and N in Breton soil compared to Ellerslie in a 10-day incubation (Rutherford and Juma, 1989ab*)
 - "Breton microbes are lean and mean; Ellerslie microbes are fat and lazy" (Tom Goddard)

^{*}Rutherford and Juma. Biol. Fertil Soils 8: 134-153

WOBHH soil C balance

- 0.28 Mg C ha⁻¹ yr⁻¹ = 1.0 Mg CO₂ ha⁻¹ yr⁻¹ (Maybe some methane?)
- 0.003 Mg N_2O ha⁻¹ yr⁻¹ or **3** kg N_2O ha⁻¹ yr⁻¹ would offset this sequestration.
- cumulative growing season N₂O flux in NPKS from WOBHH is 2.5 kg N₂O ha⁻¹ yr⁻¹
- more N₂O is released during freezing and thawing.

Conclusions

- continuous forage had greatest Soil C levels after 30 years
- soil still sequestering C after 80 years of agriculture in some treatments of the Breton Classical plots, but this may be offset by increased N₂O emissions.
- N₂O fluxes need to be considered in C balance of mixed annual-perennial and permanent perennial systems (cradle to grave)