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...the sky is clear and spacious, the earth is solid and full, all creatures flourish together, 
content with the way they are, endlessly repeating themselves, endlessly renewed... 

- Lao Tzu 

But honest men do not pretend to know; they are candid and sincere; they love the truth;. 
they admit their ignorance and they say, "We do not know." 

- Robert Green Ingersoll 

 
 
 
 

 
 
 

PREVIE
W



Dedication 

For my parents, who told me to go play outside. 

And 

For those who have sat upon the shore of the northern lakes, looked into the starlit sky, 
and fallen asleep to the haunting cry of the loon. For those who have wandered the fjords 
and mountains, watching the deepening twilight as the moon rises high amid the heavens. 
Your steadfast love and understanding are the stars that guide my path, the lapping waves 
that soothe my soul, and the makwag that guard my heart. You are my wilderness... and 

you have my eternal gratitude. Miigwetch. 

 
 
 
 

 
 
 

PREVIE
W



Abstract 

Multi-ungulate communities can be structured by competition and facilitation, but 

few studies explore the interactions by which these processes occur or the subsequent im­

plications for plant communities. Using paddock experiments conducted in central Alberta, 

I evaluated how previous and concurrent grazing influences resource selection and intake in 

a native assemblage containing bison (Bison bison), wapiti (Cervus elaphus), and mule deer 

(Odocoileus hemionus). Bison were unaffected by concurrent grazing, whereas previous 

grazing reduced daily intake. By altering the activity and resource selection of wapiti and 

deer, bison facilitated the daily intake of wapiti and displaced deer. When foraging simul­

taneously, behavioural interactions reduced forage utilization and homogenized the spatial 

distribution of forage. Although sequential grazing decreased the spatial heterogeneity of 

graminoid biomass in most scenarios, sequential grazing generally increased the patchi-

ness of forbs. My research demonstrates that behavioural interactions have implications 

for ungulate assemblages and forage biomass in aspen parklands. 
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An overview and rationale for evaluating 
ungulate guild dynamics 
1.1 Ecological context and background 

Competition creates selective pressure by altering the fitness of individuals (Darwin 
1859). Over time, this process may restrict niche availability or broaden niche breadth 
(Abrams 1990), steer the evolution of species, and ultimately form and maintain 
community structure. Although ecologists often overlook facilitation (Boucher et al. 
1982, Bruno et al. 2003), like competition, it influences individual fitness by altering the 
abundance and distribution of resources. Competition occurs when one species reduces 
the fitness of another by limiting a shared resource via exploitation or interference 
(Darwin 1859, Crombie 1947, Birch 1957, Case and Gilpin 1974), whereas facilitation 
occurs when one species increases the fitness of another by improving access to resources 
(Allee et al. 1949). Although competition and facilitation are mutually exclusive, both 
outcomes depend on the condition of communities. Understanding the mechanisms by 
which these two outcomes occur is therefore critical to population and community 
ecology (Strong et al. 1984, Diamond and Case 1986). 

Much of our theory on competition and facilitation in multi-species grazing systems 
comes from research conducted in the Serengeti-Mara, where ungulates migrate in a 
predictable progression (Gwynne and Bell 1968). At the end of the rainy season, buffalo 
(Syncerus caffer), zebra (Equus burchelli), wildebeest (Connochaetes taurinus), topi 
(Damaliscus lunatus), and Thomson's gazelle (Gazella thomsoni) migrate into the 
tall-grass sward in order of decreasing body mass (except topi, which precede wildebeest). 
Some ecologists hypothesized that this progression was driven by facilitation (Gwynne 
and Bell 1968, Bell 1971) and, indeed, early work indicated that large-bodied zebra 
migrate into the sward to forage on grass stems, medium-bodied wildebeest follow to 
forage on the leaves exposed by zebra, and small-bodied Thomson's gazelle follow to 
forage on the herbs and young grass shoots left by wildebeest (Bell 1971). Subsequent 
studies found that wildebeest facilitate the intake of Thomson gazelle by creating grazing 
lawns (McNaughton 1976,1985), but have no demographic effect (Sinclair and 
Norton-Griffiths 1982, Dublin et al. 1990). Other ecologists proposed that narrow incisor 
breadth permits-small bodied ungulates to be more selective than larger-bodied ungulates, 
allowing them to remove high quality forage (Alius and Gordon 1987). Succeeding 
experiments demonstrated that wide-muzzled wildebeest could forage on shorter swards 
than narrow-muzzled topi but that topi could forage more selectively (Murray and Illius 
2000), indicating that topi may be able to reduce the quality of tall-grass swards enough to 
displace wildebeest. 

The same mechanisms are believed to have driven evolutionary grazing patterns in 
North America (Hudson et al. 2002). Prior to the arrival of industrial agriculture, bison 
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(Bison bison), wapiti (Cervus elaphus), and mule deer (Odocoileus hemionus) were the 
dominant ungulates on the northern Great Plains (Allen 1877, Murie 1951, Soper 1964). 
Research has shown that summer grazing by cattle improves winter forage conditions for 
wapiti (Anderson and Scherzinger 1975) and that grazing lawns created by bison (Vinton 
et al. 1993, Coppedge and Shaw 1998) increase the intake of wapiti by increasing bite 
rates (Didkowsky 2006). Although studies have shown that wapiti depress cattle 
production by decreasing intake (Hobbs et al. 1996a, 1996b) it remains unclear whether 
wapiti also compete against bison. Similarly, despite evidence of competition between elk 
and deer (Stewart et al. 2002) research has not demonstrated whether or not competition is 
related to the higher selectivity of deer. 

Competition and facilitation are equally important from a practical viewpoint, as 
land managers have expressed interest in the application of multi-ungulate communities. 
Multi-species foraging is believed to result in more balanced utilization than 
single-species foraging (Nolan and Connolly 1989) via the complementary use of forage 
(Bell 1970, Jarman and Sinclair 1979). Multi-species foraging can also increase economic 
output by increasing animal performance and permitting increased stocking rates (Telfer 
and Scotter 1975, Nolan and Connolly 1989, Wright et al. 2006, Fraser et al. 2007). These 
economic effects have the additional benefit of increasing output using energy 
optimization rather than energy input (Briske and Heitschmidt 1991). Increased gains are 
therefore not offset by the cost of increasing management intensity. 

Despite the theoretical and practical importance of competition and facilitation, 
identifying the mechanisms by which they occur is challenging. Ecologists often infer 
competition and facilitation from resource overlap (Jenkins and Wright 1988, Jenks et al. 
1996, Voeten and Prins 1999, Kuiters et al. 2005, Wegge et al. 2006). However, because 
ungulates can alter foraging behaviour at multiple scales, ecologists must evaluate 
changes in spatial, temporal, and dietary behaviour. For example, Stewart et al. (2002) 
demonstrated that mule deer and wapiti in eastern Oregon avoid one another during 
6-hour intervals, but do not maintain spatial separation over 7-day intervals. Although 
such studies are easily quantified, most provide little insight into the processes by which 
competition and facilitation occur and do not demonstrate altered performance (Putman 
1996). Identifying the foraging processes that alter performance is difficult in natural 
settings where performance may change in response to predation, disease, and variable 
resource availability (Connell 1983). In contrast, experimental settings allow researchers 
to control for environmental variability and isolate the mechanisms that drive competition 
and facilitation. 

The hope that rangelands can be restored and maintained by evolutionary grazing 
patterns (Fuhlendorf and Engle 2001) highlights the practical and theoretical importance 
of identifying the mechanisms that drive competition and facilitation. Observations within 
the aspen-parkland ecoregion of central Alberta suggest that native ungulates persist at 
higher densities than cattle due to complementary forage use (Telfer and Scotter 1975), 
but little is known about the competitive and facultative interactions. The fact that this 
ecoregion is a valuable livestock production zone (McCartney 1993) and has been 
promoted as a potential site for native ungulate production (Telfer and Scotter 1975), 
prompted the foundation of the Precision Ranching Initiative. 

2 
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1.2 Precision Ranching Initiative 
The Precision Ranching Initiative (PRI) was established to evaluate whether 

evolutionary grazing patterns can improve the efficient and sustainable use of rangelands, 
and provide practical management recommendations. Driven by the belief that grazing the 
right animal at the right place at the right time is fundamental to rangeland management 
(Hudson et al. 2002), PRI explored how multi-species grazing influenced foraging 
behaviour and landscape characteristics. Field studies at the University of Alberta Kinsella 
Research Ranch were designed to answer two questions. First, is the multi-species grazing 
of native ungulates more productive and sustainable than cattle? Second, is the sequential 
grazing of native ungulates more productive than simultaneous grazing? 

PRI conducted research at the University of Alberta Kinsella Research Ranch 
(53 °01'N, 111 °34'W), located 150km east-southeast of Edmonton, Alberta. Climate at 
the ranch is continental with 115 to 125 frost-free days (Chetner et al. 2003). The mean 
annual temperature averages 2.3 °C and total annual precipitation averages 414mm 
(Environment Canada 2005). Mean summer (June and July) and autumn (September and 
October) temperatures are 15.8 °C and 7.4 °C and total precipitation averages 204mm. 
The ranch is located within the Viking Upland physiographic district (Howitt 1988), 
where it overlies moderately calcareous bedrock (Mossop and Shetsen 1994). The area is 
characterized by knob and kettle terrain dominated by the Elnora soil group, a 
well-drained assemblage of Chernozemic soils interspersed with poorly drained Gleysolic 
depressions and small portions of Solonetzic soils (Howitt 1988). Vegetation on the ranch 
is representative of the aspen parkland ecoregion (Strong 1992), consisting of a 
grassland-forest mosaic with graminoid-dominated uplands, interspersed with lowland 
forests and riparian meadows. 

Four grazing treatments were imposed for two 45-day periods, one in summer (1 
June to 15 July) and another in autumn (1 September to 15 October). Treatments were 
replicated in 3 paddocks (n=12) and consisted of (1) cattle grazing for 45 days; (2) bison, 
wapiti, and mule deer grazing simultaneously for 45 days; (3) a sequence of bison, wapiti, 
mule deer grazing for 15 days each; and (4) a sequence of mule deer, wapiti, and bison 
grazing for 15 days each. 

Paddocks varied in size (Appendix I), but the average proportions of six vegetation 
communities were similar across the replicate paddocks. The number of individuals 
within each 15-day period was constrained to ensure there was equal forage removal 
across paddocks given a priori 45-day stocking rates (Society for Range Management 
1998; Appendix II.B). As a result, the number of individuals within each paddock differed 
among the four treatments (Appendix II.D). Study animals were primarily non-pregnant 
adult and sub-adult females, but bison and cattle that gave birth during the experiment and 
were allowed to remain within the study with their calves (Appendix III). Animal 
handling was conducted according to University of Alberta animal ethics protocols HUDS 
2004-33B and HUDS 2004-33C. 
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1.3 Thesis overview 
The primary objective of my thesis was to evaluate the effect that multi-species 

foraging had on its members and the forage they consumed. Within the scope of PRI, I 
evaluated how three native ungulate species, bison, wapiti, and mule deer, altered the 
vegetation community selection and foraging behaviour of one another and assessed how 
such interactions influenced the utilization and distribution of forage. Evaluations were 
conducted in a series of foraging trials, each consisting of three 15-day periods: (1) bison, 
wapiti, and mule deer foraging simultaneously; (2) a sequence of bison, wapiti, mule deer 
foraging for 15 days each; and (3) a sequence of mule deer, wapiti, and bison grazing for 
15 days each. 

First, I examined the selection, intake, diet composition, and fecal nitrogen of 
species and showed that species interactions were both competitive and facilitative and 
primarily driven by changes in selection and activity (Chapter 2). Next, I demonstrated 
that species interactions affected forage utilization and resulted in differential changes to 
spatial pattern (Chapter 3). Finally, I discussed the implications of my findings for 
management and conservation (Chapter 4). 
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The influence of ungulate guild dynamics 
on resource selection and intake 

2.1 Introduction 
The ability of ungulates to influence ecosystem structure and function (reviews by 

Fleischner 1994, Hobbs 1996, Augustine and McNaughton 1998, Kie and Lehmkuhl 
2001, Cote et al. 2004) has generated interest in the formation and maintenance of 
ungulate communities. Ungulates alter ecosystems through selective removal of forage 
(review by Augustine and McNaughton 1998), trampling (Naeth et al. 1991, Donkor et al. 
2002), and nutrient redistribution (McNaughton 1985, Day and Detling 1990, Frank et al. 
1994, Bokdam and Gleichman 2000, Augustine and Frank 2001). However, the nature of 
these ecosystem relationships depends on the evolutionary history of the ecosystem 
(Milchunas and Lauenroth 1993) as well as current environmental conditions. Intact 
multi-species communities can be structured by competition (review by Schoener 1983, 
Sinclair 1985, Murray and Illius 2000) and facilitation (Gwynne and Bell 1968, 
McNaughton 1976, Didkowsky 2006), but few studies have tested the conditions under 
which these two processes occur (however see Sinclair and Norton-Griffiths 1982). 

Competition occurs when shared resources are limited by exploitation (Illius and 
Gordon 1987, Murray and Illius 2000) or interference (Park 1962, Stewart et al. 2002), 
resulting in reduced performance. Animals may respond to reduced resources by 
increasing search time, which may result in decreased bite rates (Spalinger and Hobbs 
1992). Alternatively, animals may forage less selectively, resulting in increased chewing 
times and lower diet quality (Balch 1971, Shipley and Spalinger 1992). Finally, species 
may reduce activity to conserve energy (Schoener 1971) or broaden their diets to include 
less preferred forages (MacArthur and Pianka 1966, Van Soest 1982, Demment and Van 
Soest 1985). Ungulates can, however, mitigate competition by altering foraging behaviour 
at any one scale. For example, species whose resources are limited by an interfering 
competitor may maintain intake by foraging in a new location or altering diet 
composition. However, because mitigating strategies are constrained by resource 
availability, animals may not be able to fully compensate when forage is most limiting 
(Sinclair 1975, Wiens 1977). 

Facilitation occurs when an animal improves the foraging opportunities for another. 
For example, an herbivore may open vegetative structure (Vesey-Fitzgerald 1960) or 
promote the nutritive regrowth of a shared resource (McNaughton 1976, Gordon 1988), 
improving performance of a second herbivore. Because of growing season dynamics, 
facilitation resulting from plant regrowth occurs during the growing season when plants 
can compensate for tissue removal (Maschinski and Whitham 1989, Tiffin 2002). In 
contrast, increased forage access may be most important early in the growing season when 
residual forage from the previous year is most abundant, or at the end of the growing 
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season when most current annual growth has senesced. Animals may respond to increased 
resources by reducing search time, which may either decrease time-spent active (Schoener 
1971) or increase bite rates (Spalinger and Hobbs 1992). Alternatively, species may 
increase feeding time in an attempt to maximize energetic input (Schoener 1971, Belovsky 
1986, Kie 1996). 

Ecologists often infer competition and facilitation from resource overlap (Jenkins 
and Wright 1988, Jenks et al. 1996, Voeten and Prins 1999, Kuiters et al. 2005, Wegge et 
al. 2006). However, because ungulates can alter foraging behaviour at multiple scales, 
such changes must be evaluated in terms of spatial, temporal, and dietary behaviour. For 
example, Stewart et al. (2002) demonstrated that mule deer and wapiti in eastern Oregon 
avoid one another during 6-hour intervals, but do not maintain spatial separation over 
7-day intervals. Although such studies are easily quantified, most provide little insight into 
the processes by which competition and facilitation occur and do not demonstrate altered 
performance (Putman 1996). Identifying determinants and dynamics of performance is 
difficult in natural settings where performance may change in response to predation, 
disease, and variable resource availability (Connell 1983). Controlled grazing experiments 
allow researchers to control these factors and expose the processes that result in 
competitive and facilitative relationships (Hobbs et al. 1996a, 1996b; Didkowsky 2006). 

To assess when competition and facilitation occur during summer and autumn, I 
conducted three experiments comparing the spatial distribution and foraging behaviour of 
a focal species grazing in a mixed-species assemblage to the same species (1) foraging 
alone, (2) foraging alone following another species, or (3) foraging alone following two 
other species. My research was conducted in the aspen parklands of Alberta where I used 
an ungulate guild comprised of bison (Bison bison), wapiti (Cervus elaphus), and mule 
deer (Odocoileus hemionus; Allen 1877, Murie 1951, Soper 1964, Telfer and Scotter 
1975). Comparisons took place during three 15-day periods, with the focal species 
changing depending on the period. I estimated daily intake (kg/day) and fecal nitrogen 
(%) and assumed that competition occurred when one or both decreased, and that . 
facilitation occurred when one or both increased. I repeated evaluations in summer and 
autumn because I predicted that species would respond differently as the availability of 
high quality resources declined. 

I hypothesized that behavioural interactions would be driven by body size and gut 
constraints (reviews Hanley 1982,1997). Because large-bodied organisms have absolutely 
high metabolic requirements (Kleiber 1961) and are socially dominant (Schoener 1983, 
Berger 1985, Persson 1985), I predicted that bison would not be affected by the foraging 
of other species. Because large-bodied ungulates increase access to high-quality forage 
(Vesey-Fitzgerald 1960, Gordon 1988), I predicted that wapiti, an intermediate forager 
that feeds on a mixture of forbs and graminoids in summer (Cook 2002, Gibbs et al. 
2004), would increase intake and diet quality (Hanley 1982, Merrill 1994) by selecting 
areas previously grazed by bison. Furthermore, because I expected plant senescence 
would negate the benefit of following bison, I predicted that wapiti would maintain intake 
by selecting independent of bison in autumn. Rather I predicted that wapiti would increase 
selection for shrubs, whose leaves breakdown faster than graminoids (Spalinger et al. 
1986) allowing more efficient energy accumulation. Because I expected wapiti would 
deplete high-quality forage revealed by bison in summer, I predicted that deer would 
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increase intake and diet quality by selecting areas preferred by bison but not wapiti. 
Finally, as plants senesced and wapiti depleted high-quality forage in autumn, I predicted 
that deer would maintain intake and diet quality by avoiding areas selected by bison and 
wapiti. Consequently, I expected facilitative interactions in summer, when resources were 
abundant, and competitive interactions in autumn, when resources were more limiting. 

2.2 Methods 

2.2.1 Study area 
Research was conducted at University of Alberta Kinsella Research Ranch 

(53 °01 'N, 111 °34'W), located 150km east-southeast of Edmonton, Alberta. Climate at 
the ranch is continental with 115 to 125 frost-free days (Chetner et al. 2003). The mean 
annual temperature averages 2.3 °C and total annual precipitation averages 414mm 
(Environment Canada 2005). Mean summer (June and July) and autumn (September and 
October) temperatures are 15.8 °C and 7.4 °C and total precipitation averages 204mm. 
The ranch is located within the Viking Upland physiographic district (Howitt 1988), 
where it overlies moderately calcareous bedrock (Mossop and Shetsen 1994). The area is 
characterized by knob and kettle terrain dominated by the Elnora soil group, a 
well-drained assemblage of Chernozemic soils interspersed with poorly drained Gleysolic 
depressions and small portions of Solonetzic soils (Howitt 1988). Vegetation on the ranch 
is representative of the aspen parkland ecoregion (Strong 1992), consisting of a 
grassland-forest mosaic with graminoid-dominated uplands, interspersed with lowland 
forests and riparian meadows. Within the study area, I distinguished six vegetation 
communities: mixed prairie grassland, fescue grassland, shrubland, aspen forest, riparian 
meadow, and riparian edge. 

2.2.2 Experimental design 
I examined spatial distribution, forage intake, diet composition, and fecal nitrogen 

of three ungulate species during two 45-day foraging trials, one in summer (1 June to 15 
July 2005) and another in autumn (1 September to 15 October 2005). Each foraging trial 
consisted of three 15-day periods, during which, species were deployed in three replicated 
sequences (n=9): (1) bison, wapiti, and mule deer foraging simultaneously; (2) a sequence 
of bison, wapiti, mule deer foraging for 15 days each; and (3) a sequence of mule deer, 
wapiti, and bison grazing for 15 days each. 

To control for phenological changes in vegetation, my study consisted of three 
experiments. Individual experiments were composed of one or two intra-specific 
comparisons, each of which contained two or three treatments (Table 2.1). In the first 
15-day trial, I compared the behaviour and daily intake of both bison (Bl) and deer (Dl) 
foraging alone to the same species foraging simultaneously in a mixed group of bison, 
wapiti, and deer (SI). In the second 15-day trial, I compared wapiti foraging alone in 
paddocks previously grazed by either deer (WD2) or bison (WB2) to wapiti foraging 
simultaneously with bison and deer in paddocks previously grazed by the same mixed 
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group for 15 days (S2). Finally, in the last 15-day trial, I compared both bison (B3) 
foraging alone in paddocks previously grazed by deer followed by wapiti, and deer (D3) 
foraging alone in paddocks previously grazed by bison followed by wapiti, to the same 
species foraging simultaneously in a mixed group of bison, wapiti and deer previously 
grazed by the same group for the previous 30 days (S3). 

Paddocks varied in size (Table 2.2), but the average proportions of six vegetation 
communities were similar across the triplicate paddocks (nonparametric MANOVA, df 
=12, x2 =13.12, P<0.36). The number of individuals within each 15-day period was 
constrained to insure there was equal forage removal across paddocks given the a priori 
45-day stocking rate of 2.4 animal unit months/ha (Society for Range Management 1998; 
Appendix n.A). As a result, the number of individuals within each paddock differed 
between the sequential and simultaneous foraging sequences (Appendix II.D). The two 
sequences contained six bison, four wapiti, and three deer, whereas the simultaneous 
sequence contained three bison, three wapiti, and two deer. 

The study was comprised primarily of non-pregnant adult and sub-adult females, but 
four bison gave birth and were allowed to remain within the study with their calves. The 
mean body mass of adult and sub-adult bison, wapiti, and deer differed between species at 
the beginning of both the summer (Appendix ID; ANOVA, df=3, F=101.42, P<0.01; 
Bonferroni/wwf hoc, P<0.01) and autumn (ANOVA, df=3, F=70.69, P<0.01; Bonferroni 
post hoc, P<0.01) trials. Animal handling was conducted according to University of 
Alberta animal ethics protocols HUDS 2004-33B and HUDS 2004-33C. 

2.2.3 Diet composition and fecal nitrogen 
Feces were collected during the summer and autumn to compare the diet 

composition and fecal nitrogen of each species. Feces were collected at the end of each 
45-day trial and therefore reflected species' diet during each 15-day trial when grazed 
alone and during each 45-day trial when grazed simultaneously. Six composite samples 
were collected in each paddock for every species, each consisting of 2-3 pellets collected 
from 5 individual fecal samples. The six samples were pooled into two independent 
composites and oven dried for a minimum of 48 hours at 50 °C. 

Diet composition (Appendix IV) was estimated at the Wildlife Habitat Nutrition 
Laboratory, Washington State University. Botanical composition was determined by 
modifying existing microhistological techniques (Sparks and Malechek 1968, Holechek 
and Vavra 1981, Holechek and Gross 1982). The relative cover of plant fragments was 
quantified at 25 randomly located microscope views on each of eight slides per sample 
(Korfhage 1974, Davitt 1979). Botanical composition was calculated by dividing the 
cover of each genus by the total cover and multiplying by 100. Genera were collapsed into 
three forage classes (graminoids, forbs, shrubs). Treatments were compared with 
nonparametric MANOVA, which tests the equality of mean ranks using the chi-square 
distribution (Puri and Sen 1971, Finch 2005). Nonparametric MANOVA was also used to 
evaluate diet composition within each forage class. The inability to consistently identify 
forb genera prevented analyses from being conducted on forbs, but genera within the 
graminoid (Agrostis, Bromus, Calamagrostis, Carex, Dactylis, Deschampsia, Elymus, 
Hesperostipa, Juncus, Pod) and shrub (Populus, Rosa, Salix, Shepherdia/Eleagnus, 
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