Rangeland Ecosystem Goods and Services: A review of current research efforts in Alberta

Daniel B. Hewins, Cameron N. Carlyle & Edward W. Bork dhewins@ric.edu & ebork@ualberta.ca

Rangeland Research Institute

What are EG & S?

"Benefits to all of society from the existence of grasslands"

Water Purification & Flood Mitigation

Pollination

Rangelands and EG&S:

Recent findings of a University of Alberta/AEP Collaboration

- Sampled 114 grassland exclosures maintained by Alberta Environment & Parks
- Assessed plant biomass, composition & diversity, as well as carbon (C) storage

©University of Alberta Created 04/2014 by DFS

Highways

Rangelands and EG&S

Schuler, Dry Mixedgrass

Examined areas inside and outside long-term cattle exclosures

Harold Creek, Upper Foothills

Grazing & Plant Biodiversity

- Plant diversity peaked in mod-high rainfall areas
- Diversity increased with long-term exposure to grazing by releasing plant species suppressed in the absence of ungulates
- Largest increases in Parkland and Foothills Fescue

Does Grazing Alter the Abundance of Introduced Plant Species?

- Introduced speciesrepresented about~10% of communities
- Grazing facilitated the increase of introduced spp. but only under moist conditions!
- Semi-arid grasslands with < 350 mm (14") may have greater resistance to invasion

Long-Term Grazing Impacts on Grassland Productivity

- Grazing enhanced production in high rainfall grasslands of SW Alberta
- Introduced species may play a role in enhancing herbage productivity

Exposure to Grazing May LimitShrub Encroachment

- Grazing was tied to lower shrub cover in the Rocky Mountain Forest Reserve
- Largest reductions were in the Upper Foothills (grazing allotments)

Rangelands & Carbon Storage

(Mitigation of Rising CO₂ Levels – "Greenhouse Effect")

Grasslands store 10 - 30% of the world's organic carbon (C)

Temperate grasslands (~8% of earth's surface)

contain more than 300 Gt C:

- 9 Gt in plants (3%)
- 295 Gt in soils (97%)

The second second

Why Have Grasslands Accumulated Large Amounts of Carbon?

Perennial grasslands have high root to shoot ratios (e.g. ~7:1 in Mixedgrass Prairie; R.T. Coupland, Matador, SK)

Cultivation (land use conversion) leads to the rapid loss of 30-50% of soil C (Burke et al. 1995; Lal

2002)

'Furnace Plots' from S. Alberta

Initiation of continuous wheat cropping led to the loss of 19% of grassland C:

-1.7 tC ha⁻¹ yr⁻¹ for first 4 years

-0.32 tC ha⁻¹ yr⁻¹ for next 9 years

Source: Wang et al. (2010)

Carbon Loss Also Varies Regionally:

Modest Declines in Foothills Fescue

Soil C was 20-30% less 5-6 yr after conversion of a

grassland with favorable moisture

Source: Whalen et al. (2003)

Carbon Losses Under Various Land Uses:

Larger Declines in Mixedgrass Prairie

Soil C dropped 30-40% 5-6 years after the

conversion of arid grassland

Source: Whalen et al. (2003)

Why are Tame Forages Less Effective at Carbon Storage?

Tame forages have lower root mass & OM than native grassland

Source: Dormaar et al. (1994)

Benchmarking Study Results Also Show Large Carbon Losses with Land Use Change in Alberta

What is the Value of C Retained/Lost from Native Grasslands?

Carbon stores derived using ABMI areas for each land use change and a C-valuation of \$15/t-CO₂e (CCEMC)

How Quickly Does Carbon Recover Once Lost by Cultivation?

Naturally re-vegetated Mixedgrass Prairie failed to

recover in root mass & soil OM after 50 years

- Low resilience suggests long-term opportunity costs in C storage with land use conversion

Source: Dormaar & Smoliak (1985)

What About Grazing and Carbon?

Grazing Effects on Carbon are Inconsistent & Difficult to Predict

Grazing and Ecosystem Carbon

16000 ☐ Total C 15-30 (g/m2) ■ Total C 0-15 (g/m2)

- Reductions in veg C (litter, mulch) under grazing were offset by increased soil C
- Net effect is **NO CHANGE** in total ecosystem C

*** Soil C is the largest pool of ecosystem C due its large mass (60 - 140 t/ha)

Grazing Impacted Belowground Vegetation as well ...

Grazing stimulated root production (as it did shoot biomass) in areas with favorable rainfall

Current Studies are Linking Grazing and Microbial Activity to Litter Decomposition, Carbon Cycling, and Associated GHGs

Grazing Effects on Decomposition

After 12 months, litter decomposition was enhanced by grazing ... could this reflect greater incorporation of C into

soil OM?

Comparative GHG Uptake Under Long-Term Grazing (Stolnikova, in prep.)

No statistical differences in CO₂ / N₂0 flux in relation to grazing, though both GHGs had a trend to be lower in grazed agro-ecosystems

Current State of Carbon Offset Programs in Agriculture ...

Tillage Systems Protocol (2009):

- Payments for reductions in CO₂ through reduced and no-till agronomic practices (~\$1 per acre)
- Largely ephemeral policies that could change

Source: van Kooten (2006)

Policy Implications for Carbon Storage in Grasslands ... ???

- 1) Currently no incentives for maintaining C in existing native grassland
- 2) This is despite greater C levels and more favorable soil health

GOA is Working on Policies to Value Grassland Carbon Stores

(Regulated offsets + Voluntary market)

Take Home Messages

- ➤ Native grasslands provide abundant EG & S in comparison to croplands (i.e. C storage, improved soil health, greater pollination, GHG uptake), with work underway to develop policies valuing this service
- Moderate grazing can enhance some EG & S, including plant diversity and forage production, and maintain C

'Beef & Biodiversity'

Goal is to directly link comprehensive biodiversity data with cattle producer management practices at ~200 sites across Alberta

Grassland as Key Habitat for Pollinators (Drs. C. Carlyle & J. Manson)

- > Work to date has found over 180 different species
- Bee abundance and diversity were <u>positively related</u> to floristic richness, range health and forage quality

Acknowledgements

Mark Lyseng, Donald Schoderbek, Sean Chuan, Ekaterina Stolnikova, Monica Kohler, Ashton Sturm, Scott Chang, Guillermo Hernandez-Ramirez, Christina Hebb

Funding:

