Overview of Grassland Research: EG&S, Carbon & Drought

Edward Bork, Dan Hewins and Cameron Carlyle

Dept. of Agricultural, Food and Nutritional Science

March 4, 2016

Alberta Forage Industry Network

Leduc, AB

Brief Outline

- ➤ Main findings of recent ALMA grassland benchmarking study
- > Decomposition studies to assess grazing impacts on carbon accumulation + GHG emissions
- Climate change impacts on Canadian grasslands+ new project underway

EG & S: "Benefits all of society receive from the existence of grasslands"

Water Purification/Flood Mitigation

Pollination

Rangelands and EG & S:

Recent findings of a University of Alberta/AEP Collaboration

Sampled 114 grasslands managed by AlbertaEnvironment & Parks

Carbon Benchmarking Sites in Alberta

Quantified Various EG & S

- Examined exclosures (15-70 yr old)
- Enabled long-term assessment of presence/absence of livestock grazing
- Measured biomass, plant diversity & carbon stores

Grazing & Biodiversity

- Plant diversity peaked in mod-high rainfall areas
- Diversity increased with long-term exposure to grazing by releasing plant species suppressed in the absence of ungulates
- Largest increases were in Parkland and Foothills Fescue

Does Grazing Alter Introduced Plant Species?

- Introduced species increased with rainfall
- Semi-arid grasslands with < 350 mm (14") had greater resistance to invasion
- Grazing facilitated the increase of introduced spp. but only under moist conditions

Grazing Impacts on Grassland Herbage Productivity

- Grazing enhanced production in high rainfall grasslands of SW Alberta
- Introduced species likely play a role in boosting herbage productivity!

Grazing May Help Limit Shrub Encroachment

- Grazing was tied to lower shrub cover in the Rocky Mountain Forest Reserve
- Largest reductions were in grazing allotments of the Upper Foothills

Rangelands & Carbon Storage

(Mitigation of Rising CO₂ Levels – "Greenhouse Effect")

Grasslands store 10-30% of the world's organic carbon (C)

Temperate grasslands (~8% of earth's surface)

contain more than 300 Gt C:

- 9 Gt in plants (3%)
- 295 Gt in soils (97%)

Carbon Losses Under Competing Land Uses Across Alberta

(Benchmarking Study)

What is the Value of C Retained/Lost from Native Grasslands?

Summary of the amount (Mt) and value (\$ B) of C retained and lost from native grasslands relative to alternative land uses in Alberta. Results are stratified by the Prairie and Parkland, with values derived from mean C differences observed within each region. Masses of C associated with the each value are shown in parentheses. Carbon is valued at \$15/t - CO₂ e (equivalence). Areas¹ of each land use were obtained courtesy the Alberta Biodiversity Monitoring Institute.

Carbon Pool	Prairie Region		Parkland Region		
	C Currently Retained in Native Grassland				
	vs Cropland	vs Intro. Forage	vs Cropland	vs Intro. Forage	
TOTAL C - mass	78.217 Mt	102.156 Mt	64.934 Mt	35.749 Mt	
value	\$ 4.30 B	\$ 5.61 B	\$ 3.56 B	\$ 1.96 B	
	C Potentially Lost from Past Native Grassland Conversion				
	To Cropland	To Introd. Forage	To Cropland	To Introd. Forage	
TOTAL C - mass	76.318 Mt	13.494 Mt	204.997 Mt	32.955 Mt	
value	\$ 4.19 B	\$ 0.74 B	\$ 11.25 B	\$ 1.81 B	

¹ Areas of grassland, introduced forage and cropland in the Prairie (Dry Mixedgrass, Mixedgrass and Foothills Fescue combined) were 3.396319, 0.448629, and 3.313839 M ha, respectively. Areas of grassland, introduced forage and cropland in the Parkland (Northern Fescue, Central Parkland and Foothills Parkland combined) regions were 1.143926, 1.054508, and 3.611383 M ha, respectively.

Land Use Conversion Also Reduced Soil Health

NG had Improved Metrics of Soil Quality!

LAND USE	Max Water Availability	Soil Porosity	S-index
	(cm³ cm-³)		
Native Grassland	0.14 ^b	0.54 ^b	0.048 ^b
Introduced Pasture	0.099 ^a	0.46 ^a	0.033 ^{ab}
Annual Cropland	0.096 ^a	0.47 ^a	0.020 ^a

Max water availability is the difference between field capacity and wilting point; S-index is the maximum slope of the water retention curve, with a greater slope indicative of greater water delivery with increasing moisture stress.

Source: Unpublished data

Land Use Conversion Impacts on Soil Aggregation

Lower Fractal Mass (Dm) = Improved Aggregation

Source: Unpublished data

What About Grazing and Carbon?

Grazing Effects on Total Carbon are Inconsistent & Difficult to Predict

Grazing Impacts on Veg'n Carbon (Benchmark Study)

- Grazing reduces the size of aboveground vegetation C pools
- Largest decline is in the surface mulch layer

Grazing and Soil Carbon

Note trend for greater SOC in 5 of 6 regions:

Reductions in veg C (litter, mulch) are offset by consistent increases in soil C

*** Soil C is the largest pool of ecosystem C due its large mass (60 – 140 t/ha)

Grassland Carbon Responses to Grazing May be Linked to Production

Grazing stimulated root production (parallel to shoot biomass)

Policy Implications for Carbon Storage in Grasslands ... ???

- 1) Maintain existing native grassland ...
- 2) Convert marginal cropland to grassland ...
- 3) Explore how grazing mechanistically increases C stores ...

Nutrient Cycling Studies

Collecting litter in the fall

Litterbag filled with grass placed in the field

Sample soils to measure *in-situ* belowground processes

Grazing Effects on Decomposition

 After 12 months, litter decomposition was enhanced by grazing

Preliminary Results: Lower CO₂ Emissions From Soil in Grazed Areas

Could Grazing-Induced Changes in Plant Species Alter Carbon Cycling?

Foothills rough fescue ↓ Grazing tolerance

Kentucky bluegrass

†Grazing tolerance

Change in litter quality

In-situ CH₄ Uptake in Rested & Rotationally Grazed MGP (Gao et al., in prep; 2014 data)

CH₄ Production in Soil Removed From Different Defoliation/Moisture Treatments

Source: Wang et al. (in prep); 2013 data; Lab incubations

UPTAKE: High Intensity–Low Frequency > High Intensity-High Frequency

Impacts of Climate & Defoliation on Grassland Function

Why Assess Climate Change?

Climate has always fluctuated, and will continue to do so in the future

Climate x Defoliation Interactions ...

Field Sites (3 Prairie Provinces)

Kinsella, AB

PFRA GAP Community Pasture, SK

Excessive Defoliation Reduces Production

Root Length Responses to Defoliation

Drought Effects Varied Regionally ...

Rooting Length Declined Under Drought

Precipitation Treatment

Warming Also Reduced Average Forage Availability

+1.3-2.2 deg C throughout the growing season

Total Plant Species Richness

New Study (7 regional sites): Impact of defoliation regimes and drought on EG & S (forage, biodiversity, C and GHG)

Ideal grazing systems under drought may vary with soil, vegetation, etc.

Social Implications of a Changing Climate ...?

Numerous Funders

