

What Lies Beneath: Carbon in wetland and buried soils

Angela Bedard-Haughn, Dan Pennock, Bobbi Helgason*

Department of Soil Science, University of Saskatchewan *Agriculture and Agri-Food Canada

Introduction

- Prairie Pothole Region spans 800,000 km² and encompasses millions of freshwater mineral soil wetlands
- Landscape has been dramatically altered by agriculture:
 - Drainage
 - Tillage redistribution

Badiou et al. 2011. Wetlands Ecol Manage 19: 237-256

C in wetland soils: why?

- In North America, freshwater mineral soil wetlands have been estimated to account for 40 Gt of C
- Despite the potential importance of wetland soils for accurate inventory of soil C stocks, they often fall between the cracks: too wet for soil scientists and too dry for wetland scientists
- Over the past decade, much more recognition of their significance, but still room for improvement!

C in wetland soils: how?

- Touch on three studies:
 - Quantifying C in cultivated wetland soils of the Black soil zone with different drainage histories: never drained, recently drained (≤15 yr), medium-term drained (15-35 yr), and long-term drained (≥35 yr)
 - Quantifying C in wetland soils of the Dark Brown soil zone with different management histories: native (never-tilled), uncultivated (tilled in the past, but not currently), and cultivated (annual cropping)
 - Quantifying C in restored wetland soils across the Prairie provinces: recently (<5 yr) vs. long-term restored (≥5 yr)

C in wetland soils: cultivation

Wetland type		Soil organic carbon
	n	SOC _{eqm} to 30 cm (Mg ha ⁻¹)
Cultivated	7	87.2 (21.7)
Uncultivated	7	168.6 (21.5)
Native	12	175.1 (52.8)

Uncultivated wetlands occupy only 11% of site area but contain 23% of SOC stores!

C in wetland soils: restoration

Estimated a mean annual sequestration rate for restored wetlands (33 y):

2.7 Mg C ha⁻¹ year⁻¹ *or*

9.9 Mg CO_2 eq. ha⁻¹ year⁻¹

Even after accounting for increased CH₄:

 $3.3 \text{ Mg CO}_2 \text{ eq. ha}^{-1} \text{ year}^{-1}$

C in buried soils: why?

- Redistribution of soil across the landscape changes lateral and vertical distribution of SOC
- Where redistribution has resulted in inverted profiles, may underestimate SOC stocks
- Buried A horizons are potential C sinks
- Eroded knolls also potential sinks: dynamic replacement, especially when restored to grassland

C in buried soils: how?

- VandenBygaart et al. examined SOC concentrations/stocks with depths at six sites across Canada
 - Also used ¹³⁷Cs and A horizon thickness to evaluate amount and timescale of C redistribution over past 50 years
- Helgason et al. considered microbial activity in buried profiles at one of VandenBygaart's sites
 - Looked at microbial abundance and C mineralization
- Other studies have observed buried profiles with potentially much longer redistribution histories

C in buried soils: tillage redistribution

VandenBygaart et al. 2012 Global Change Biology 18: 1441–1452

C in buried soils: still living C

Helgason et al. 2014 Agriculture, Ecosystems and Environment 196: 94–102

C in buried soils: old C

Bedard-Haughn and Pennock. 2002. Geoderma 110: 169-190

C in wetland and buried soils: implications

- Depressions, wetland soils, and concave backslopes hold relatively high proportion of grassland soil C – especially if we look beyond the surface!
- Given their potential to serve as sinks, wetland soils should be targeted for restoration to grassland
- Watch for unusually low surface C in depositional positions – may be sign of inverted profile
- When quantifying C in grassland environments, need to look deeper and maybe even get your feet wet!

Acknowledgments

- St. Denis National Wildlife Area (Can. Wildlife Service)
- SK Ministry of Ag: Agriculture Development Fund
- Agriculture and Agri-Food Canada
- Robin Brown, M.Sc. student on drainage project
- Hannah Konschuh, M.Sc. student on buried C project
- Cover photo credit: Mark Bidwell, Environment Canada