FESTUCA HALLII (VASEY) PIPER (PLAINS ROUGH FESCUE)
AND FESTUCA CAMPESTRIS RYDB (FOOTHILLS ROUGH FESCUE)
RESPONSE TO SEED MIX DIVERSITY AND MYCORRHIZAE

by

Darin Earl Sherritt

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in
Land Reclamation and Remediation

Department of Renewable Resources

©Darin Earl Sherritt
Fall 2012
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only. Where the thesis is converted to, or otherwise
made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the
copyright in the thesis and, except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatsoever without the author's prior written permission.
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.
DEDICATION

This MSc thesis is dedicated to my grandfather, Fred A. Forster,
who instilled in me a passion for always learning,
and for always reminding me that if you’re going to do a job,
do it right the first time.
ABSTRACT

Rough fescue (*Festuca hallii* (Vasey) Piper (plains rough fescue) and *Festuca campestris* Rydb (foothills rough fescue)) are long lived perennials that have been difficult to establish on disturbed sites. This research assessed the impact of seed mix diversity and suppression of arbuscular mycorrhizal fungi on fescue establishment. Three research sites were examined in each of the northern fescue and foothills fescue subregions. Fescue seeded alone, a mix of fescue and closely associated species and fescue with a cover crop of *Elymus dahuricus* (dahurian wild rye) were seeded and compared. Mycorrhizae impact was assessed by comparing plots treated with a fungicide (Rovral) to controls. Rough fescue was able to establish by seeding in the field. Fescue monocultures had better fescue establishment than mixes. *Elymus dahuricus* was not a successful cover crop for *Festuca hallii* and was marginal for *Festuca campestris*. Fungicide application did not have any impact on fescue establishment.
ACKNOWLEDGEMENTS

This is by far the most important part of a thesis for without the help of a long list of people a thesis never happens. I'm going to do my best to mention everyone that had a part in this beast. I've survived up to this point.

First off a big thanks and a debt of gratitude to Dr Peggy Desserud for giving me the opportunity to help on your project, for your help in getting my project going, for the fescue seed, for help in the field, with statistics and in the lab. I think without you and our talks about the Rumsey block I would have never been as passionate about this project as I was. Mae Elsinger is also responsible for giving me a summer long tour of the Rumsey block and providing inspiration for doing fescue reclamation properly.

Thank you to Dr Barry Irving, my range team coach and mentor for too many years to mention. I learned as much as I could from you on how to tell Poa pratensis from Koeleria macrantha. You taught me that spelling was actually more important than I ever thought it could be, and that it is possible to be good at both plants and URME provided the right incentive is given. I thank you for the opportunity to help coach the team for 2 years. You taught us to critically analyze any situation because nobody is always right. Perhaps the biggest thing is that you always reminded us that no results are still results.

Sten and Cheryl Lundberg opened their home to me and allowed me to stay there while I was doing field work in the foothills; without that my trips would have been much less enjoyable. Thank you to my uncle, Keith Forster, who let me stay at his house while working in the Rumsey block and letting me use any equipment that I needed. Marilyn Neville and Steven Tannas, thank you for giving me some ideas on what to do in the field and for picking out the foothills sites for me. Dick Purveen, thank you for providing equipment that made my life much easier in the field.

Seed was provided by Gloria Weir from Brett Young, Steven and Clare Tannas and Marshall MacKenzie from Alberta Research Council. Without that this project would not have been possible; it can be hard to find some of the species that we used. Big thanks to Alicia Entem for getting the seed from the Tannas's ready for me to use, you saved me a lot of time.
A big thanks to all the field assistants. Steven Murchison and Katryna Forsch during the first summer. Katryna will probably never forget having to wait for who knows how long for someone to pull us out of the mud hole. Heather Archibald probably never wants to count another grass tiller in her life, but I’d probably still be out counting without her help. Tim Antill and Candace Nemirsky saved me by helping out with my last bit of sampling, I still owe you both. I don’t think Candace will ever let me forget having to sleep in the truck because of a few pesky mice.

Thank you to all of my friends who provided motivation by constantly asking me when I was going to be done and trying to keep me sane. So Tianna Magis and Brenda Shaughnessy I guess I owe you a beer. Jill Kaufmann saved my behind by showing me how to run the stats I needed to do. Thanks to Candace for the daily phone calls to discuss how horrible the writing process is. Thanks to Tim Antill for always complaining how dry it was in the office, which precipitated the need for afternoon beers. Thank you to Dr Al Jobson, Dr Anayansi Cohen Fernandez, Jaime Walker and Marla Bohm for the lab help. Thanks to the rest of the Naethians; it was a great group to be a part of.

My parents, Sam and Brenda Sherritt, thanks for always being there. For helping me with anything you could when I needed it and for letting me stay at home while I was going to school. This would never have been possible without you.

Thank you to my supervisory committee, Dr Edward Bork and Dr Walter Willms. A special thanks to Dr Bork for getting me interested on range science and instilling the importance of native grasslands. Finally, thank you to my supervisor, Dr Anne Naeth for being patient, understanding and supportive throughout this whole ordeal.
“Variability is the rule not the exception”

Edward Bork
TABLE OF CONTENTS

1. INTRODUCTION ... 1
 1.1 Background .. 1
 1.2 Rough Fescue and Rough Fescue Grasslands .. 2
 1.2.1 Rough Fescue Grasslands ... 2
 1.2.2 Rough Fescue Biology and Ecology ... 3
 1.2.3 Rough Fescue Establishment ... 4
 1.3 Mycorrhizal Fungi .. 6
 1.3.1 Mycorrhizal Fungi Classification ... 6
 1.3.2 Carbon Allocation and Use .. 7
 1.3.3 Phosphorus Uptake ... 7
 1.3.4 Water Relations .. 8
 1.3.5 Ecological Interactions ... 8
 1.3.6 Common Mycelial Networks .. 9
 1.4 Research Objectives ... 11
 1.5 References .. 11

2. FESTUCA HALLII (VASEY) PIPER (PLAINS ROUGH FESCUE) AND
 FESTUCA CAMPESTRIS RYDB. (FOOTHILLS ROUGH FESCUE)
 RESPONSE TO SEED MIX DIVERSITY .. 16
 2.1 Introduction ... 16
 2.2 Objectives and Hypotheses ... 17
 2.2.1 Objectives .. 17
 2.2.2 Hypotheses .. 17
 2.3 Materials and Methods .. 18
 2.3.1 Festuca Hallii Research Area .. 18
 2.3.2 Festuca Campestris Research Area ... 19
 2.3.3 Research Site Locations .. 20
 2.3.4 Experimental Design and Treatments ... 21
 2.3.5 Research Site Establishment ... 21
 2.3.6 Sampling and Measurement Methods ... 22
 2.3.6.1 Soil water measurements .. 22
 2.3.6.2 Vegetation measurements .. 23
 2.3.7 Statistical Analyses ... 24
 2.4 Results and Discussion ... 24
 2.4.1 Festuca Hallii Sites .. 24
 2.4.1.1 Seeded species ... 24
 2.4.1.2 Non-seed species ... 26
 2.4.2 Festuca Campestris Sites .. 27
 2.4.2.1 Seeded species ... 27
 2.4.2.2 Non-seed species ... 28
 2.4.3 Relationships .. 28
 2.4.4 Soil Water .. 30
 2.4.5 Reclamation Applications ... 31
 2.5 Conclusions ... 32
 2.6 References .. 32
3. MYCORRHIZAE IMPACTS ON *FESTUCA HALLII* (VASEY) PIPER (PLAINS ROUGH FESCUE) AND *FESTUCA CAMPESTRIS* RYDB. (FOOTHILLS ROUGH FESCUE) .. 57

3.1 Introduction ... 57
3.2 Objectives and Hypotheses ... 58
 3.2.1 Objectives .. 58
 3.2.2 Hypotheses .. 58
3.3 Materials and Methods ... 58
 3.3.1 *Festuca Hallii* Research Area ... 58
 3.3.2 *Festuca Campestris* Research Area ... 59
 3.3.3 Research Site Locations .. 60
 3.3.4 Experimental Design and Treatments ... 60
 3.3.5 Research Site Establishment ... 61
 3.3.6 Sampling and Measurement Methods ... 63
 3.3.6.1 Soil water measurements .. 63
 3.3.6.2 Vegetation measurements .. 63
 3.3.6.3 Glucosamine assay ... 64
 3.3.7 Statistical Analyses .. 66
3.4 Results and Discussion .. 66
3.5 Conclusions .. 68
3.6 References ... 68

4. RESEARCH SUMMARY AND APPLICATIONS ... 72

4.1 Research Summary ... 72
4.2 Reclamation Applications ... 72
4.3 Research Limitations .. 72
4.4 Future Research .. 73
LIST OF TABLES

Table 2.1 *Festuca hallii* growth variables at plains sites in 2009 37
Table 2.2 *Koeleria macrantha* growth variables at plains sites in 2009 38
Table 2.3 *Elymus dahuricus* growth variables at plains sites in 2009 38
Table 2.4 Non-seeded grass and forb biomass at plains sites in 2009 39
Table 2.5 Non-seeded grass cover at plains sites in 2009 40
Table 2.6 Non-seeded forb cover at plains sites in 2009 41
Table 2.7 Non-seeded grass height at plains sites in 2009 42
Table 2.8 Non-seeded forb height at plains sites in 2009 42
Table 2.9 Non-seeded grass density at plains sites in 2009 43
Table 2.10 Non-seeded forb density at plains sites in 2009 44
Table 2.11 *Festuca campestris* growth variables at foothills sites in 2009 45
Table 2.12 *Koeleria macrantha* growth variables at foothills sites in 2009 46
Table 2.13 *Festuca idahoensis* growth variables at foothills sites in 2009 46
Table 2.14 *Elymus dahuricus* growth variables at foothills sites in 2009 46
Table 2.15 Non-seeded grass and forb biomass at foothills sites in 2009 47
Table 2.16 Non-seeded grass and forb cover at foothills sites in 2009 48
Table 2.17 Non-seeded grass and forb density at foothills sites in 2009 49
Table 2.18 Non-seeded grass and forb height at foothills sites in 2009 50
Table 2.19 Correlations for fescue treatments at plains sites in 2009 51
Table 2.20 Correlations for mixed treatments at plains sites in 2009 52
Table 2.21 Correlations for fescue treatments at foothills sites in 2009 54
Table 2.22 Correlations for mixed treatments at foothills sites in 2009 55
Table 2.23 Volumetric soil water in 2009 .. 56
Table 3.1 Glucosamine values for all sites ... 70
Table 3.2 Volumetric soil water in 2009 .. 71
LIST OF FIGURES

Figure 2.1 Research site locations ... 35
Figure 2.2 Research plot layout ... 36
CHAPTER I. INTRODUCTION

1.1 BACKGROUND

Alberta fescue grassland is divided into three ecoregion types. Northern fescue and aspen parkland subregions were historically dominated by Festuca hallii (Vasey) Piper (plains rough fescue), montane grasslands were dominated by Festuca altaica Trin. (altai fescue) and foothills fescue grasslands were dominated by Festuca campestris Rydb. (foothills rough fescue) (Pavlick and Looman 1984).

Fescue grasslands perform important ecological, aesthetic and economical functions. Rough fescue is a large bunch grass often growing over 1 m in height with roots that can exceed 1 m in depth (Looman 1969). This deep rooting characteristic is one factor that led to formation of the characteristic black chernozemic soils of the fescue grasslands. Ecologically, the rough fescue plant growth form aids in preventing weedy species from invading and increases site stability (Looman 1969). Rough fescue productivity is high and contributes to litter formation which helps maintain soil water and infiltration capacity (Naeth et al. 1991a, 1991b, 1990). Economically, fescue grasslands are an important grazing resource. They have higher forage production than any other native grassland in western Canada except tallgrass prairie remnants in Manitoba (Looman 1969). Using these grasslands for winter forage helps protect fescue prairie while reducing the cost of feeding livestock (Willms 1992).

Fescue grasslands have high intrinsic value. Approximately 150 plant species have been recorded for the foothills fescue region and just over 100 plant species have been recorded for the northern fescue region (Moss and Campbell 1947). Fehr (1982) reported 290 species for Rumsey Block; nine were considered rare at the time. The greater number of species in the foothills could be explained by proximity to mountains and other vegetation types not found in the northern fescue region (Moss and Campbell 1947). Bradley et al. (2002) noted two species currently on the Alberta Natural History Information Centre (ANHIC) vascular plant tracking list and over 60 plants on the list could potentially occur within the foothills fescue grasslands.
Fescue grasslands currently comprise approximately 112,000 km² of southern Alberta, with 15 % being northern and foothills fescue and 5 % central parkland and mixed grass (Adams et al. 2003). Of 1,686 grassland sites studied in the Alberta central parkland, only 12.5 % had plains rough fescue communities (Holcroft-Weerstra 2003). Once comprising about 1.5 million ha, foothills fescue grassland is now reduced to about 16.8 % (252,000 ha) of its original size (Adams et al. 2003).

Historically there have been two major disturbances to fescue grassland, semi frequent fires and grazing. Since the turn of the 20th century, two more major disturbances have been added, conventional dryland agriculture and natural resource development and extraction in the form of well sites and pipelines. These disturbances differ from grazing and fire in that they cause a greater degree of soil disturbance. To date there have been no documented examples in western Canada of successful reclamation of fescue grassland (Alberta Wildlife Association 2006).

Rough fescue plant communities are at more risk of conversion to non-native community types than other native grasslands in Alberta. Once disturbed or invaded by non-native species, rough fescue grasslands are less likely to be restored (Alberta Wildlife Association 2006). Looman (1969) documented that Bromus inermis Leyss. (smooth brome) and Medicago falcata L. Arcang. (yellow alfalfa) could successfully replace the native cover of black soils when seeded. Based on lack of restoration success to date, and given the value of these grasslands, strategies other than seeding disturbances need to be considered if the end goal is a grassland that can resemble undisturbed areas. This research will focus on re-establishment of fescue on well site disturbances.

1.2 ROUGH FESCUE AND ROUGH RESCUE GRASSLANDS

1.2.1 Rough Fescue Grasslands

Foothills fescue grasslands are typically associated with black chernozemic soils on moist sites. Northern rough fescue grassland is associated with black chernozems on moist sites in northern parts of the ecoregion and dark brown chernozems on southern parts, which is typically drier (Moss and Campbell
The dark brown soil zone is approximately the middle of the tension zone between fescue grassland to the north and Stipa grassland to the south. Foothills fescue grasslands are also typically associated with black chernozems, but do not have the dark brown association, as precipitation is greater than that of the northern fescue region.

The modal plant community on mesic sites in the northern fescue subregion is *Festuca hallii* associated with *Stipa curtiseta* (A.S. Hitchc.) Barkworth (western porcupine grass) (Moss and Campbell 1947). It changes slightly on drier southern parts as *Bouteloua gracilis* Willd. ex Kunth (blue grama grass) becomes dominant. The modal plant community for foothills fescue is *Festuca campestris* associated with *Danthonia parryi* Scribn. (Parry’s oat grass). *Danthonia* appears to be a local dominant of importance in restricted areas, especially on shallow soils of rocky and gravelly slopes. It may be best to regard *Danthonia parryi* as forming an edaphic climax.

Both foothills and northern fescue grasslands are presumed to have formed under co-evolution with grazing by plains bison (Morgan 1980). Bison wintered on fescue prairie and aspen parkland, thus supporting the idea that fescue prairie evolved under a history of dormant season grazing. This is also evidence that these grasslands have evolved under a dormant season disturbance regime.

When comparing climates of fescue grasslands to those of other vegetation types, Weaver (1979) noted that the climate of fescue grasslands is more similar to those of some coniferous forest types than those of other grassland types. This could suggest that other factors besides temperature and precipitation are responsible for maintaining fescue prairies, potentially including wind, snow cover, soil characteristics or fire frequency. Fescue grasslands occur in regions of greater water efficiency than do mixed prairie communities. The availability of water is enhanced by lower temperatures which lead to lower evaporation rates, and slightly higher precipitation in fescue grasslands (Anderson 2006).

1.2.2 Rough Fescue Biology and Ecology

Festuca campestris is a cool season grass adapted to short growing seasons (Anderson 2006). It is a large bunch grass, usually comprised of up to 250 culms,
that rarely has rhizomes (Pavlick and Looman 1984). This growth form suggests that it is adapted to periodic low intensity fires (Aiken and Darbyshire 1990). In undisturbed areas, crown diameters can be 20 to 50 cm (Moss and Campbell 1947). Festuca hallii is a cool season grass adapted to short growing seasons (Anderson 2006). It differs from Festuca campestris in usually being rhizomatous, and forms smaller (three to five culms) bunches (Pavlick and Looman 1984).

Both fescues are characteristic of climax grasslands (Tirmenstein 2000, Willms and Fraser 1992) and are also present in other successional stages. As long lived perennial species that devote several years to vegetative growth before reproducing via seed, and fit into a K selected classification (Anderson 2006). Both reproduce primarily by seed (Pavlick and Looman 1984) although seed production does not occur often or in a predictable manner. In southern Alberta, Johnston and MacDonald (1967) reported large seed production in 1902, 1952, 1964 and 1966. Both species typically initiate growth immediately following snow melt, start to senesce before the onset of summer drought and are dormant by October (Johnston and MacDonald 1967).

The response of Festuca campestris to infection by mycorrhizal fungi may impact plant growth characteristics. These changes could include larger size or production of wide, flat leaves. Aiken and Fedak (1992) describe two plants of Festuca campestris in Alberta that were growing close together but were different in size and morphology. The arbuscular mycorrhizal (AM) fungus Glomus fasciculatus was found in the roots of the larger individual. Although no evidence has been found for similar effects on Festuca hallii, Anderson (2006) stated that infection by mycorrhizae could have similar impacts to growth morphology.

1.2.3 Rough Fescue Establishment

The few attempts to restore Festuca hallii plant communities in the parkland and northern fescue subregions have been unsuccessful, mainly due to the difficulty in establishing rough fescue. Gas well sites and pipelines reclaimed in these ecoregions had fair to poor establishment of native species, including rough fescue, from seed mixes and sod salvage (Elsinger 2006, AXYS Environmental Consulting 2003, Petherbridge 2000, Integrated Environments Ltd. 1991). A restoration experiment in the grasslands of central Saskatchewan resulted in the
conclusion that conserving remaining rough fescue prairie rather than restoring it would have greater benefit (Clark 1986).

Grassland restorations are often unsuccessful due to unreliable seed sources, competition from weeds and agronomic species and variation in climate (Desserud 2006, Wilson 2002). Perennial weed invasion is a problem throughout the fescue prairie, which can negatively impact rough fescue re-establishment (Clark 1998). Research preventing or reducing competition from non-native or weed species includes burning, grazing or mowing and applying herbicides. Stromberg and Kephart (1996) reviewed successful restoration techniques to reduce competition for native seedlings, including mowing annuals before their seeds mature. Ewing (2002) concluded that lower weed biomass was associated with greater Festuca idahoensis survival.

In 1991, an assessment of revegetation of 14 industrial sites was conducted in Rumsey Block including well sites, pipelines, an access road and a right-of-entry (Integrated Environments Ltd. 1991). These sites varied in age from 4 to 14 years. Results varied from persistence of wheat grasses, such as Agropyron dasystachyum (Hook.) Scribn. & J.G. Sm. (northern wheat grass) or Agropyron smithii (Rydb.) A. Löve (western wheat grass) from the seed mix, encroachment of Phleum pratense L. (timothy) or Bromus inermis and natural recovery of rough fescue and other native species. Plant species composition of the majority of disturbed sites was not similar to adjacent native range. A few exceptions occurred where natural recovery resulted in encroachment of Festuca hallii and Stipa curtiseta on pipelines.

Two studies examined long term (> 20 years) restoration success of Festuca hallii. Vujnovic (1998) studied species composition after 20 years of grazing or other disturbance in Festuca hallii dominated communities in the central parkland. Slogan (1997) studied vegetation dynamics after 23 years in Festuca hallii grasslands in Manitoba. No other research studies examined the long term results of revegetation of rough fescue grasslands (Desserud 2006).

Spring seeding is recommended over fall seeding, as in the spring seedbed temperatures are increasing and become more conducive to germination. Temperatures near 15 °C seem to be most favourable for germination of Festuca hallii (Grilz 1992). The higher soil water in spring, due to snow melt, also favours
germination. Optimal growth and regrowth following defoliation occurs near or below 17 °C for Festuca hallii; as temperatures increase above this, growth starts to decline (King et al. 1998).

1.3 MYCORRHIZAL FUNGI

1.3.1 Mycorrhizal Fungi Classification

Mycorrhizal fungi are classified into two main groups, endomycorrhizal and ectomycorrhizal, based on hyphal association with plant roots (Smith and Read 2008). Endomycorrhizal fungi are further divided into three groups, arbuscular mycorrhizae (AM), ericoid mycorrhizae and orchidaceous mycorrhizae.

Endomycorrhizal fungi bodies grow branched in root cortical cells, forming an arbuscule. External structures, hyphae, extend from the root surface several mm into the soil. Ectomycorrhizal fungi form a hartig net, a mycelia complex between root cortical cells and the mantle, and a hyphal network that partially or fully encloses the root. Endomycorrhizae and ectomycorrhizae differ in plant species associations. Endomycorrhizae do not form associations with specific plants; ectomycorrhizae are highly specific in their plant associations. Ectomycorrhizae are commonly associated with woody plant species; arbuscular mycorrhizal fungi occur in herbaceous and woody plants (Gurevitch et al. 2006).

Arbuscular mycorrhizal fungi are the most common mycorrhizal type associated with flowering plants. They are possible major factors in determining interactions between plants, and on a larger scale, vegetation ecosystem functioning (Smith and Read 2008). Arbuscular mycorrhizal fungi require plant hosts to complete their life cycle, but many of these potential hosts plants grow and survive without fungi. Historically the relationship between fungi and plant was considered a mutualism. Asai (1944) first recognized a relationship between development of fungi and plant growth. Recently the relationship has been evaluated on a continuum of interactions, ranging from mutualism to parasitism depending on the partners and the environmental variables (Jones and Smith 2004, Johnson et al. 1997). Fungi require a plant host for a carbon source for energy, and thus use a considerable amount of carbon that is fixed by the plants themselves through the process of photosynthesis.