Cost-effective Conservation Planning for Species at Risk in Saskatchewan’s Milk River Watershed: The Efficiency Gains of a Multi-species Approach

by

Alicia Entem

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

Master of Science in Agricultural and Resource Economics

Department of Resource Economics and Environmental Sociology

©Alicia Entem
Spring 2012
Edmonton, Alberta
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.
Abstract

The federal Species at Risk Act requires economic analyses to be included in species at risk recovery plans. Recovery plans are often completed species by species and their economic analyses fail to employ modern analytical methods. A unique multi-species at risk recovery plan within Saskatchewan’s Milk River Watershed provided the opportunity to calculate costs associated with native grassland conservation, develop optimization models that create cost-effective grassland conservation designs, compare the costs of cost-effective conservation designs with the costs of current proposed critical habitat polygons, and assess the improvements in efficiency associated with multi-species plans relative to single species plans. The cost-effective conservation plans were designed using Marxan software and included both direct and opportunity costs. The results of the optimization models suggest there is a potential for large efficiency gains if economic considerations are included in habitat conservation plans and if conservation plans are created for multiple species simultaneously.
Acknowledgments
I would first like to extend a huge thank you to Drs. Vic Adamowicz (supervisor) and Peter Boxall (co-supervisor) for their supervision, guidance and support with this project. Vic’s wealth of knowledge, ability to tailor his supervision style to each of his student’s needs, and uncanny ability to promptly return email messages regardless of the continent or time zone he finds himself in have made my time under his supervision a positive experience in all regards. Peter’s open door was made use of frequently and I want to thank him for being a sounding board for life, work and school during the past several years. I would have never signed myself up for this graduate program if it weren't for these two gentlemen.

My family and friends who have supported me through this adventure are wonderful and I thank you all for that. I know my mom and dad are particularly proud of me, and I’d like to acknowledge the encouragement they have provided while I have pursued my education. I would also like to thank Poa, my most loyal admirer, for her companionship during the long hours spent on the computer finishing this thesis.

A special thanks to the support staff and students of the Department of Resource Economics and Environmental Sociology who have become like my family over the past five years in the department. I have been a part of the department in many different capacities (undergraduate researcher, research assistant, graduate student, and sessional lecturer) and feel very fortunate to have completed my degree in such a warm and inviting environment.

Several members of the Canadian Wildlife Service and the Saskatchewan Ministry of Environment provided invaluable data and advice along the way. Ben Sawa, Ed Beveridge, Mark Gilchrist, Pat Fargey, Stephen Davis and Mark Wayland thank you for your help.

Last, but most definitely not least, thank you to the Natural Sciences and Engineering Research Council Julie Payette Research Scholarship, the Bank of Montreal Financial Group Graduate Scholarship, and the Linking Environment and Agriculture Research Network for financially supporting my work as a graduate student.
Table of Contents

1 Introduction ... 1
 1.1 Species at Risk and Conservation Area Planning .. 3
 1.2 The Role of Economics within Conservation Area Planning 5
 1.2.1 The Potential Benefits of Multi-species Conservation Area Planning 9
 1.3 The South of the Divide Action Plan ... 10
 1.3.1 Methods/Approaches Used ... 12
 1.4 Overview of the Results ... 13
 1.5 Chapter Summary ... 14

2 Literature Review: Cost-Effective Conservation Area Planning 15
 2.1 Biology-based Conservation Area Planning .. 15
 2.2 The Advantages of Economics in Systematic Conservation Area Planning 17
 2.3 Incorporating Economic Costs into Conservation Area Planning 18
 2.3.1 Homogeneous Costs and Cost Proxies ... 20
 2.3.2 Spatially Heterogeneous Costs .. 20
 2.3.3 Relevant Costs for Conservation Area Design 21
 2.3.4 The Mutual Exclusivity of Production and Conservation Areas 22
 2.4 Incorporating Dynamics into Conservation Area Design 23
 2.5 Multiple Species Conservation Area Planning ... 24
 2.5.1 The Potential Efficiencies of Multiple-species Conservation Planning 26
 2.5.2 The Realization of Multiple-species Conservation Planning Efficiencies 27
 2.6 Additional Topics in Conservation Area Planning .. 27
 2.7 Cost-effective Conservation Area Planning in the South of the Divide: A Minimum
 Set Reserve Site Selection Model .. 28
 2.8 Chapter Summary ... 31

3 The Study Area: The South of the Divide ... 32
 3.1 The Geographical Location .. 32
 3.2 The Region’s Land-use and Importance to Species at Risk 33
 3.2.1 Landowners and Species at Risk Management 38
 3.3 The Species of the Study Area .. 38
 3.3.1 The Habitats and Historic Ranges of the Species at Risk 39
 3.3.2 Threats to Species at Risk and their Habitat ... 43
 3.3.3 Species at Risk Critical Habitat ... 43
 3.3.4 Beneficial Management Practices (BMPs) ... 48
 3.4 Chapter Summary ... 49
4 Methods

4.1 Linear Programming ... 50
4.1.1 Marxan: Creating Optimal Conservation Area Networks 51
 4.1.1.1 The Optimization Problem .. 52
 4.1.1.2 The Strengths and Weaknesses of Marxan 55
4.2 The Input Data Required .. 58
 4.2.1 The Biological Information ... 59
 4.2.1.1 The Biological Data: Species’ historical ranges 59
 4.2.1.2 The Biological Data: Species’ Critical Habitat 60
 4.2.2 The Spatial Cost Information ... 60
 4.2.2.1 Oil and Natural Gas Net Present Values 60
 4.2.2.2 Agricultural Land Values .. 73
 4.2.2.3 Land Conversion Costs .. 77
 4.2.2.4 Grazing Management Opportunity Costs 80
 4.2.2.5 Buffer Strips .. 85
 4.2.2.6 Shelterbelts .. 86
 4.2.2.7 Summary ... 87
4.3 The Marxan Models .. 87
 4.3.1 The Three Marxan Models ... 88
 4.3.1.1 The Model Scenarios ... 90
 4.3.1.2 Calibrating the Models .. 91
 4.3.2 The Marxan with Zones Model .. 91
 4.3.2.1 The Model Scenarios ... 94
 4.3.2.2 Calibrating the Model ... 94
4.4 Chapter Summary .. 94

5 Results

5.1 Summary of the Biological and Cost Data 95
 5.1.1 Range and Critical Habitat Areas .. 95
 5.1.2 Range and Critical Habitat Costs .. 98
5.2 Using the Species’ Ranges and the Conservation Costs within the Marxan Reserve Site Selection Models .. 102
5.3 The Results of the Marxan Reserve Site Selection Modeling 102
 5.3.1 The Total Costs of Each Model ... 103
 5.3.2 Cost Curves for Models 1 to 3 .. 104
 5.3.2.1 Species Cost Curves ... 107
 5.3.2.2 The Added Cost of Larger Habitat Patches 118
 5.3.2.3 Multiple Species at Risk Planning versus Single Species Planning 120
 5.3.3 Distribution of Cost-Effective Habitat Protection for Models 1 to 3 124
 5.3.4 Summary of Marxan Models 1 to 3 .. 132
 5.3.5 Marxan with Zones ... 133
5.3.5.1 The Shape of the Cost Curve ... 133
5.3.5.2 The Added Costs of Larger Habitat Patches 135
5.3.5.3 The Benefits of Simultaneous Multi-Species Planning 136
5.3.5.4 The Allocation of Conservation Activities 138
5.4 Chapter Summary .. 149

6 Conclusion .. 151
6.1 Research Contributions .. 151
 6.1.1 Including Economics within Conservation Planning 152
 6.1.2 Multi-species Conservation Planning .. 153
 6.1.3 Larger Habitat Patches within Conservation Planning 153
6.2 Limitations of the Research ... 154
6.3 Future Research .. 156

7 References ... 159
7.1 Personal Communications ... 169

A Appendix: The Species of the South of the Divide 171
B Appendix: Deriving the Marxan and Marxan with Zones Objective
 Functions ... 186
C Appendix: Oil and Natural Gas Net Present Values 189
D Appendix: Agricultural Land Values .. 225
E Appendix: Agricultural Land Conversion Costs 254
F Appendix: Grazing Management Costs .. 258
G Appendix: Buffer Strip Cost ... 273
H Appendix: Shelterbelt Cost ... 275
I Appendix: Calibrating the Marxan Parameters 277
List of Tables

Table 4.1. Summary of the spatial information created and collected in this project for use within the final Marxan models. ... 59

Table 4.2. Expected net present values (millions of 2008 dollars) of profits, royalties and taxes of all oil and natural gas wells (low, mid and high reserve levels) within each species’ range. .. 68

Table 4.3. Expected net present values (millions of 2008 dollars) of profits, royalties and taxes of all oil and natural gas wells (low, mid and high reserve levels) within each species’ critical habitat. .. 69

Table 4.4. Oil and natural gas (low, mid, and high reserve level) ENPVs (2008 dollars) per unit area ($/acre) for each species’ range. ... 71

Table 4.5. Oil and natural gas (low, mid, and high reserve level) ENPVs (2008 dollars) per unit area ($/acre) for each species’ critical habitat. ... 72

Table 4.6. A summary of the land value ratios, distance between parcels of land with and without land value ratios, and the resulting land market values (2008 dollars) for quarter sections categorized by land-use. ... 75

Table 4.7. Direct costs of converting cropland into perennial cover. ... 80

Table 4.8. Total costs of converting between land uses within the South of the Divide region. ... 80

Table 4.9. Summary statistics for grazing management opportunity costs (2008 dollars) in the South of the Divide region. ... 83

Table 4.10. Conservation design elements and their implementation in the Marxan optimization model. ... 90

Table 4.11. All of the scenarios run for the three Marxan models. .. 91
Table 4.12. Conservation design elements and their implementation in the Marxan with Zones optimization model. .. 92

Table 4.13. The zones, zone costs, and zone contribution levels as well as the land on which each zone can apply for the Marxan with Zones optimization model. 93

Table 4.14. All of the scenarios run for the Marxan with Zones Model. 94

Table 5.1. The expected net present land values and beneficial management costs (excluding agricultural land and oil and gas values for Grasslands National Park and other protected areas) associated with each species at risk’s range within the South of the Divide region. Species are listed in descending order of cost per acre (2008 dollars). .. 100

Table 5.2. The expected net present land values and beneficial management costs (excluding land values for Grasslands National Park and other protected areas) associated with each species at risk’s proposed critical habitat within the South of the Divide region. Species are listed in descending order of cost per acre (2008 dollars). . 101

Table 5.3. The conservation activities associated with each of the four reserve site selection models, and the total cost (net present value) of applying the conservation activities of each model to the entire South of the Divide study region. 104

Table 5.4 The effective annual cost (2008 dollars) to each Saskatchewan household over the next 30 years to protect the entire study region within each of the four models under three discount rates. ... 104
List of Figures

Figure 1.1. Simplified cost and benefit curves for a conservation planning problem 6

Figure 3.1. The geographic location of the South of the Divide study area within Saskatchewan’s Milk River Watershed. ... 33

Figure 3.2 The distribution of landcover types within the South of the Divide study area. .. 36

Figure 3.3 The distribution of government parks and community pastures within the South of the Divide study area. .. 37

Figure 3.4. The historical ranges of species at risk within the South of the Divide study area boundary.. 41

Figure 3.5. A map of historical species richness within the southwest corner of Saskatchewan and the South of the Divide study area. ... 42

Figure 3.6. The critical habitat boundaries for all eight species considered together. 47

Figure 4.1. The South of the Divide natural gas land values for the midpoint of the estimated remaining ultimate potential reserves (2008 dollars). .. 65

Figure 4.2. The South of the Divide oil land values shown for all oil pools in dollars per acre (2008 dollars). ... 66

Figure 4.3. Agricultural land values (2008 dollars) calculated using sales transaction and assessment data.. 76

Figure 4.4. The opportunity cost (2008 dollars) of converting land from annual cropland and perennial forages (tame pasture or hay land) into native grasslands 79

Figure 4.5. Decision tree showing how stocking rates were spatially applied to quarter sections within the South of the Divide study regions. ... 82
Figure 4.6. The spatial distribution of grazing management opportunity costs (2008 dollars) in the South of the Divide region. ... 84

Figure 4.7. Diagram showing the buffer strips of remaining standing hay left on a quarter section. ... 86

Figure 5.1. The total area (in thousands of acres) historically covered, currently protected and currently designated as proposed critical habitat for each species at risk. ... 97

Figure 5.2. Model 1 species’ cost curves shown as percentage of total NPV for each habitat protection level. The cost of 100% habitat protection is $207 million (12.5% of total NPV) for Greater Sage-Grouse, $90 million (5.4% of total NPV) for Mountain Plover, $68 million (4.1% of total NPV) for Black-footed Ferret, $50 million (3.0% of total NPV) for Eastern Yellow-bellied Racer, $1.06 billion (64% of total NPV) for Swift Fox, and $1.66 billion (100% of total NPV) for Sprague’s Pipit, Loggerhead Shrike and Burrowing Owl. ... 109

Figure 5.3. Model 2 species’ cost curves shown as percentage of total NPV for each habitat protection level. The cost of 100% habitat protection is $30 million (5.5% of total NPV) for Black-footed Ferret, $21 million (3.9% of total NPV) for Eastern Yellow-bellied Racer, $77 million (14.2% of total NPV) for Greater Sage-Grouse, $27 million (5.1% of total NPV) for Mountain Plover, $473 million (87.4% of total NPV) for Swift Fox, and $541 million (100% of total NPV) for Sprague’s Pipit, Loggerhead Shrike and Burrowing Owl. ... 110

Figure 5.4. Model 3 species’ cost curves shown as percentage of total NPV for each habitat protection level. The cost of 100% of habitat protection is $10 million (8.3% of total NPV) for Black-footed Ferret, $7 million (5.6% of total NPV) for Eastern Yellow-bellied Racer, $28 million (23.2% of total NPV) for Greater Sage-Grouse, $12 million (9.9% of total NPV) for Mountain Plover, $102 million (85.7% of total NPV) for Swift Fox, and $119 million (100% of total NPV) for Sprague’s Pipit, Loggerhead Shrike and Burrowing Owl. ... 111

Figure 5.5. Model 1 species’ cost curves shown as average cost per acre ($/acre) as habitat protection targets increase. The average cost per acre to protect all species is also included. ... 115
Figure 5.6. Model 2 species’ cost curves shown as average cost per acre ($/acre) as habitat protection targets increase. The average cost per acre to protect all species is also included.

Figure 5.7. Model 3 species’ cost curves shown as average cost per acre ($/acre) as habitat protection targets increase. The average cost per acre to protect all species is also included.

Figure 5.8. The additional costs borne when model 1 is run with habitat patch size requirements included in the optimization problem relative to the cost of model 1 run with no habitat patch size requirements. Differences were taken when species were managed simultaneously in one conservation planning model, and when they were managed individually and later merged into a single reserve network.

Figure 5.9. The additional costs borne when model 2 is run with habitat patch size requirements included in the optimization problem relative to the cost of model 1 run with no habitat patch size requirements. Differences were taken when species were managed simultaneously in one conservation planning model, and when they were managed individually and later merged into a single reserve network.

Figure 5.10. The additional costs borne when model 3 is run with habitat patch size requirements included in the optimization problem relative to the cost of model 1 run with no habitat patch size requirements. Differences were taken when species were managed simultaneously in one conservation planning model, and when they were managed individually and later merged into a single reserve network.

Figure 5.11. The percentage of model 1’s total net present valued saved as a result of optimizing habitat protection in a single reserve network for all eight species simultaneously rather than optimizing habitat protection for all eight species individually and later forming them into one reserve network.

Figure 5.12. The percentage of model 2’s total net present valued saved as a result of optimizing habitat protection in a single reserve network for all eight species simultaneously rather than optimizing habitat protection for all eight species individually and later forming them into one reserve network.
Figure 5.13. The percentage of model 3’s total net present valued saved as a result of optimizing habitat protection in a single reserve network for all eight species simultaneously rather than optimizing habitat protection for all eight species individually and later forming them into one reserve network. .. 123

Figure 5.14. The difference in costs (% of Total NPV) in Marxan model 1 when different management scenarios are implemented compared to the basecase of running individual species optimization models with no habitat patch size requirements. 124

Figure 5.15. The frequency at which each quarter section is selected (%) within model 1 (habitat target = 50% for each species; all species run simultaneously; no habitat patch size requirements). .. 125

Figure 5.16. The frequency at which each quarter section is selected (%) within model 2 (habitat target = 50% for each species; all species run simultaneously; no habitat patch size requirements). .. 126

Figure 5.17. The frequency at which each quarter section is selected (%) within model 3 (habitat target = 50% for each species; all species run simultaneously; no habitat patch size requirements). .. 127

Figure 5.18. The frequency at which each quarter section is selected (%) in model 1 (habitat target = 50% for each species; all species run simultaneously; habitat patch size requirements on). .. 129

Figure 5.19. The frequency at which each quarter section is selected (%) in model 2 (habitat target = 50% for each species; all species run simultaneously; habitat patch size requirements on). .. 130

Figure 5.20. The frequency at which each quarter section is selected (%) in model 3 (habitat target = 50% for each species; all species run simultaneously; habitat patch size requirements on). .. 131

Figure 5.21. The average cost per acre (2008 dollars) of effective habitat for Marxan model 1 and the Marxan with Zones model (Species managed simultaneously within a
single reserve network; no habitat patch size requirements). The difference in costs between the models is also shown.

Figure 5.22. The average cost per acre (2008 dollars) of effective habitat for Marxan model 1 and the Marxan with Zones model (Species managed simultaneously within a single reserve network; habitat patch size requirements turned on). The difference in costs between the models is also shown.

Figure 5.23. The additional cost borne when the Marxan with Zones model is run with habitat patch size requirements included in the optimization problem relative to the Marxan with Zones model run with no habitat patch size requirements. Additional costs were calculated both when species were managed simultaneously in a single reserve network, and when they were managed individually and later merged into one reserve network.

Figure 5.24. The percentage of the Marxan with Zones model’s total net present valued saved as a result of managing all eight species simultaneously within a single reserve network rather than managing all eight species individually and later combining them into one reserve network. Costs savings were calculated both when habitat patch size requirements were turned on and off in the model.

Figure 5.25. The difference in costs (% of Total NPV) in the Marxan with Zones model when different management scenarios are implemented compared to the basecase of running individual species optimization models with no habitat patch size requirements.

Figure 5.26. The percentage of the study region made up of each conservation activity within the Marxan with Zones model when all species are simultaneously included in a single reserve network with no habitat patch size requirements.

Figure 5.27. The percentage of the study region made up of each conservation activity within the Marxan with Zones model when all species are simultaneously included in a single reserve network with habitat patch size requirements turned on.

Figure 5.28. The distribution of conservation activities across the South of the Divide region when 25% of habitat is protected for all species simultaneously with no habitat patch size requirements.
Figure 5.29. The distribution of conservation activities across the South of the Divide region when 25% of habitat is protected for all species simultaneously with habitat patch size requirements turned on. ... 145

Figure 5.30. The distribution of conservation activities across the South of the Divide region when 75% of habitat is protected for all species simultaneously with no habitat patch size requirements. ... 147

Figure 5.31. The distribution of conservation activities across the South of the Divide region when 75% of habitat is protected for all species simultaneously with habitat patch size requirements turned on. ... 148
1 Introduction

Interest in cost-effective and systematic conservation area design—inform ed by sound economic data and used to protect biodiversity and species at risk—has begun to increase (Klein et al. 2008; Meir et al. 2004; Cabeza and Moilanen 2003). Countries that have made legal commitments within their country and the global community to protect and recover species at risk appear to be particularly active in this area. Canada is one such country. The Species at Risk Act (SARA), born out of international agreements, is Canada’s legal framework for the identification, protection and recovery of species at risk (Environment Canada 2005). Historically, the plans for the protection and recovery of species at risk in Canada have failed to promote efficient, cost-effective protection and recovery because while economic considerations (cost-benefit analyses) are a required part of the process, they are often included too late in the process or in too limited a manner to provide meaningful input into the conservation process.

This thesis has been completed with the intent to assist the socio-economic analysis required for a multiple species at risk conservation planning initiative in Saskatchewan’s Milk River Watershed—the South of the Divide Action Plan.1,2 This document provides information on the costs of protecting and restoring native grasslands within the watershed.3 This cost information was used to calculate the cost of protecting and restoring the grasslands located within the region’s species’ critical habitat areas.4 These

1 The names ‘Saskatchewan’s Milk River Watershed’ and ‘South of the Divide region’ are used interchangeably within this thesis. The South of the Divide region is delineated by the Milk River Watershed, and as such, both regions are geographically equivalent.

2 The conservation actions that will be used to protect and recover the species at risk populations in the region have not yet been determined. As such, the conservation actions and costs outlined in this thesis are simply informative and neither prescriptive nor indicative of the final actions that will be undertaken by either the federal or provincial governments.

3 Costs, within this document, include the foregone benefits of agricultural and oil and gas production as well as the direct costs of converting modified landscapes to native grasslands. Within this thesis, restoration refers to the conversion of annual cropland and tame pasture/hayland into native grasslands that will ultimately be able to provide habitat for grassland species at risk.

4 Critical habitat areas for several of the species included in this document have not yet been legally defined. As such, the critical habitat areas used in this document should not be considered
costs could be used in conjunction with other conservation costs – predator control, translocation of individuals, research and monitoring, etc. – to calculate the total cost of protecting (and, optimistically, recovering) the species of the region as well as their grassland habitats.

While it is both useful and legally required to calculate the costs associated with protecting and restoring the a priori selected critical habitat grassland areas\(^5\), it is interesting to consider how costs would change if an economic-ecological model or framework was used to select the grassland areas that would be protected and restored. This thesis used spatial economic and biological information for the Milk River Watershed to create several reserve site selection models. These models minimize the cost of grassland protection and restoration while meeting grassland habitat protection targets. While these models are not without limitation\(^6\), they can be used to demonstrate the potential efficiency gains that can be achieved by including economic considerations earlier in the species at risk protection and recovery process.

The reserve site selection models were used to answer several questions. These questions included (a) whether or not protected grassland areas could be more efficiently selected if cost information was included in the selection process; (b) whether or not efficiency gains are possible if conservation areas were selected for several species simultaneously, and if so, what is the magnitude of efficiency gains; (c) whether or not there are added costs of maximizing the size of habitat patches, and if so, what is the magnitude of the added costs; (d) which protection and restoration activities could meet conservation targets at the lowest cost; and (e) how costs increase as overall grassland protection targets increase. The answers to these questions provide information on the potential role of economics in conservation area planning and can

\(^5\) Despite the multi-species nature of the South of the Divide project, to date, all critical habitat spatially selected within the region has been done on a species-by-species basis.

\(^6\) See Section 4.1.1.2 for a discussion on the limitations of reserve site selection models with an emphasis on the challenges faced within the South of the Divide analysis.
facilitate discussions of how economics can be better included within species at risk policy and legislation. The following sections provide a brief discussion on species at risk conservation area planning, the role of economics in conservation area planning, the South of the Divide action plan, and the research approach and framework.

1.1 Species at Risk and Conservation Area Planning
Canada’s Species at Risk Act (SARA), proclaimed in June 2003, is one component of Canada’s three part strategy to protect species at risk (Government of Canada 2011). The other two components are The National Accord for the Protection of Species at Risk and the Habitat Stewardship Program (Environment Canada 2005).

SARA has three purposes: to protect wildlife from becoming extinct in Canada; to secure the recovery of extirpated, endangered, or threatened species; and to manage species of special concern to prevent them from becoming threatened or endangered (Environment Canada, 2005). Under SARA, the federal government is required to list species at risk; develop and implement recovery plans for the survival and recovery of species at risk; and monitor species at risk (Government of Canada 2011). Once listed, SARA provides protection to individuals of a species at risk and their “residences” if the species are either aquatic species, migratory birds, or are located on federal lands (Government of Canada 2011). Once a recovery strategy – indicating critical habitat for a species’ survival and recovery – has been posted and accepted on the Species at Risk Act public registry, critical habitat on federal lands (or on any lands in the case of aquatic and migratory bird species) can be legally protected. Often SARA defers to provincial laws to protect species on private lands. However, the protection of habitat for species at risk on private lands appears to be based on cooperation and volunteerism rather than law. Section 2.9 of the Canada – Saskatchewan Agreement on Species at Risk (2007) states that both governments agree that “cooperative, voluntary measures are the first approach to securing the protection and recovery of species at risk” (Saskatchewan Conservation Data Centre 2010).

SARA’s lack of jurisdiction on private land and the province’s desire to use voluntary, cooperative stewardship for the protection of species at risk ultimately results in a requirement for cooperation amongst numerous stakeholders in order to protect species at risk (Kerr and Deguise 2004). However, cooperation and voluntary
stewardship becomes complicated when coordinating multiple landowners (Kerr and Dequise 2004). Species at risk located on private lands have exhibited poorer recovery trends than species on federal lands due in part to the limited implementation of recovery tasks on privately owned land (Hatch et al. 2002).

Conservation area planning within SARA and Saskatchewan’s Wildlife Act (1998) is strictly biology-based. Critical habitat is defined in subsection 2(1) of the Species at Risk Act as the “habitat that is necessary for the survival or recovery of a listed wildlife species” (SARA 2003). Critical habitat is largely a legal term with a definition that is so broad it results in considerable difficulty in the selection of critical areas for threatened and endangered species (Hall et al. 1997). Nonetheless, the identification of critical habitat – which may be commonly associated with a species’ high quality habitat (Hall et al. 1997) – is legally required (SARA 2003). Critical habitat locations are ultimately selected species-by-species using a combination of field data and modeling techniques that account for species occurrence as well as the amounts, locations and attributes of habitat required for a species’ persistence and recovery. Once a species’ critical habitat is identified it is included within the species’ recovery strategy report.

Species recovery planning is a two-stage process as outlined in section 11.1 of the Canada – Saskatchewan Agreement on Species at Risk (Saskatchewan Conservation Data Centre 2010). The first step – the creation of a species’ recovery strategy – determines whether or not the recovery of a species is technically and biologically feasible, and if recovery is deemed feasible, the plan will include recovery goals, objectives and strategies. The second step – the creation of an action plan – identifies and prioritizes recovery measures and includes a cost-benefit analysis of the implementation of the action plan. Thus, both recovery feasibility and critical habitat designation is decided in the absence of economic considerations. The only role provided by the economic analysis is an evaluation of the already decided upon recovery strategy.

7 See the amendment to the recovery strategy of Lungle and Pruss 2008 for a brief discussion on the information used in the identification of critical habitat. The amendment is available on the Species at Risk Act’s public registry at http://www.sararegistry.gc.ca/virtual_sara/files/plans/rs_sage_grouse_sec_2-6_1009_e1.pdf
1.2 The Role of Economics within Conservation Area Planning

The consideration of economic costs and benefits has the potential to play an important role in efficient conservation area planning. By properly accounting for the costs and benefits associated with different courses of action for habitat protection, the limited resources available for species conservation could be strategically allocated to maximize net benefits (Naidoo and Ricketts 2006; Margules and Pressey 2000; Csuti et al. 1997). However, to date, most conservation area planning articles focus on the biological benefits of conservation areas and ignore the economic costs and benefits (Naidoo et al. 2006; Stewart and Possignham 2005).

In an ideal world each conservation plan would have the biological and economic information necessary to construct its own cost and benefit curves for biological protection. This could be achieved regardless of how biological protection is measured whether it is the number of individuals or breeding pairs of a species, the probability of species persistence, or, commonly in the case of SARA, the species’ habitat area (Figure 1.1). The benefits curve would include all market and non-market values of varying biological targets. The cost curves would include all implementation and opportunity costs associated with meeting the varying biological targets. Typically the benefit and cost curves take the shapes shown in Figure 1.1 (costs increase at an increasing rate and benefits increase at a decreasing rate). The curves illustrate how economic-ecological trade-offs (in standardized monetary units) vary as a function of biological targets. These curves provide the basis for a cost-benefit analysis which allows optimal biological targets to be selected within a conservation planning problem. Optimal biological targets are set where the positive difference between benefits and costs is maximized (i.e. net benefits are maximized) and it can be shown mathematically that this occurs where the slopes of the curves are equal (i.e. marginal benefits equals marginal costs).
Unfortunately the economic benefits of meeting biological targets (number of individuals or breeding pairs of a species, probability of species persistence, or, commonly in the case of SARA, species’ habitat area) are rarely calculated due to the difficulty of determining the non-market value of species at risk. The result is that the benefits curve in Figure 1.1 is seldom calculated and traditional cost-benefit analysis is not possible (Naidoo et al. 2006). Cost-effectiveness analyses, where costs are expressed in monetary terms but benefits remain measured in biological units, replace cost-benefit analysis in such cases. The most efficient plan, in the case where benefits are not calculated, is simply the plan that delivers a pre-determined conservation target for least-cost (Naidoo et al. 2006). Fortunately, consideration of the costs of conservation planning alone offers significant opportunities to achieve efficient conservation objectives in a world of limited resources (Naidoo et al. 2006; Stewart and Possingham 2005). The quantification of both biological targets and the costs of protecting those biological targets allow ecological-economic models and economic analysis to determine cost effective and highly efficient conservation plans (Carwardine et al. 2008). Improving the efficiency of conservation plans is likely to be important when
habitat protection is located on privately-owned or resource-rich land which requires difficult trade-offs to be considered.8

The cost curve (Figure 1.1) created within a cost-effectiveness analysis provides information on the cost of an efficient conservation plan at every biological target. By illustrating the economic trade-offs required at each habitat protection level (i.e. the trade-off between higher biological targets and the higher costs necessary to meet the target) the cost curve can provide valuable information for decision makers such as whether or not the economic trade-offs required to meet certain biological targets are economically or politically feasible. For example, if the desired biological target is on the flat part of the curve, little to no additional cost is required to increase the target and decision makers may increase the habitat target. But, if the current habitat target is on the steep part of the curve, a very small decrease in the biological target can result in large reductions in total cost in which case decision makers may marginally decrease the biological target in order to meet budget requirements or political acceptance of conservation plans.

Figure 1.1 can also be used to demonstrate the potential biological and economic gains that can be achieved by conducting a cost-effectiveness analysis for critical habitat designation. A species’ recovery strategy, under SARA, legally requires the calculation of species recovery costs (Subsection 49(1e) of the Species at Risk Act). Within the species’ recovery strategy, the location and amount of critical habitat required for the survival and recovery of that species at risk is designated. It is the cost of protecting this designated habitat that needs to be calculated and reported within the species’ recovery documents. Figure 1.1 provides a stylized example that illustrates the information gains possible as a result of a cost-effectiveness analysis for conservation area planning. Within Figure 1.1, the cost of protecting the critical habitat target, CH, is CHC (cost of critical habitat). This point is located at point 1*. However, an equivalent area of land, CH, can be protected for a cost of B if habitat is selected using an optimization framework that minimizes costs while still meeting the habitat targets. This

8 Locating habitat protection on least-cost areas will be especially important in the case of private land which may require the implementation of financial incentives or conservation programs to meet conservation targets.
is point 2* in Figure 1.1. Substantial cost-savings are possible if efficient conservation plans are created. However, if the budget available for conservation is CHC, efficiently planning conservation areas using an optimization framework can increase a biological target with no additional cost. For example, a much larger area of land (A) can be protected for the same cost of protecting critical habitat (CHC). This is point 3* in Figure 1.1.

An additional argument for explicitly considering economic costs within conservation planning is that it is better to explicitly (and accurately) include costs within the processes of assessing recovery feasibility and setting biological objectives rather than implicitly (and perhaps inaccurately) include economic considerations. While there may be support for the idea that economic considerations should not be included in what may seem a purely biological task, there are potentially large consequences (biologically or economically) of failing to recognize that conservation targets are never truly free of economic considerations and political dialogue (Wilhere 2007). Excluding the explicit consideration of economic considerations does not rid conservation planning from the implicit consideration of economics and value judgments (Wilhere 2007), the inclusion of which can ultimately result in sub-optimal conservation plans.\(^9\)

Properly calculated protection and recovery costs should be used to assist in the difficult decision of where to place critical habitat on privately-owned and -managed land, or on land with high economic value. It is best to make informed economic-ecological trade-offs based on quantitatively measured values.

Currently, economic costs play an important role in conservation planning within Canada because SARA requires a cost-benefit analysis of each species at risk’s action plan (subsection 49(1e) of the Species at Risk Act). However, a more sophisticated

\(^9\) An example of implied economic consideration can be found within the Woodland Caribou Recovery Strategy. Within the strategy, the target habitat protection (65% undisturbed habitat) is set where a local caribou population has a 60% probability of being self-sustaining (Environment Canada 2011a). It seems that while economic considerations are not explicitly included or calculated within the process of setting the conservation objective, some sort of consideration of economics played a role and has impeded the setting of a much stricter conservation objective. For example, the same study used to set the conservation targets also found that a greater than 90% probability of survival could be achieved if habitat disturbance was reduced to 10% or less (Environment Canada 2011b).
inclusion of economic costs earlier within the conservation planning process could ensure that the habitat protection and recovery actions outlined within an action plan are feasible, cost-effective and allocate resources to the best use.

1.2.1 The Potential Benefits of Multi-species Conservation Area Planning

The Canada-Saskatchewan Agreement on Species at Risk states that “ecosystem, landscape and multi-species approaches will be used when appropriate for the protection and recovery of species at risk” (subsection 2.7), and Saskatchewan’s Wildlife Act states that a recovery plan may include provisions for respecting one or more designated species as well as ecosystem management (subsection 50(3)). Despite these legal provisions for multi-species planning, species are generally considered individually within SARA despite numerous cases where multiple species share overlapping habitat. In contrast to Canada’s slow adoption of multi-species plans, the United States’ Endangered Species Act (ESA) has employed many multi-species plans starting in the 1980s (Tear et al. 1995).

Multi-species conservation planning provides both practical and conceptual appeal. There is a belief that multi-species plans can speed up the recovery planning process for the large number of species requiring action plans by offering time and cost efficiencies during the planning and implementation stages (Tear et al. 1995; Scott et al. 1991; Shaffer 1992). However, multi-species plans add an additional layer of biological, management and political complexity which can limit the effectiveness of the plan (Tear et al. 1995), and a study of multi-species conservation on private lands suggested that multi-species plans are more time-consuming and expensive to prepare and do not necessarily improve recovery success (Langpap and Kerkvliet 2011).

10 Habitat has been defined in the biological literature as the resources and conditions present in an area that produce occupancy – including survival and reproduction – by a given organism (Hall et al. 1997). Using this definition, habitat implies more than habitat type which refers only to the vegetation association (Hall et al. 1997). Appendix A contains detailed information on the habitat requirements for the species at risk included in this thesis; however, within the body of the thesis, habitat refers to habitat type. In the case of the species at risk in the South of the Divide, habitat type means native grassland. In turn, within this thesis, habitat protection refers to the protection and/or restoration of native grasslands within the region.