NOTICE:

The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS:

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L’auteur conserve la propriété du droit d’auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n’y aura aucun contenu manquant.
Examine Committee

Scott X. Chang, Renewable Resources

James F. Cahill, Biological Sciences

Edward W. Bork, Agricultural, Food and Nutritional Science

Yongsheng Feng, Renewable Resources

Luo Yiqi, Botany and Microbiology, University of Oklahoma
To,

My Mother, Hosnieh:

for being the flicker of a candle in dark pathways, guiding me through the right path, praying for my wishes to come true

and

in loving memory of My Father, Abbas:

who regretfully did not live to see my achievements
To,

My Husband, Mostafa:

for his endless support and constant encouragement, helping me to go through this journey,

for enormous patience, living 6215 miles far away from me,

for his constant long calls, giving me a sense of love and connection,

I am thankful every moment of my life for having him beside me.
Abstract

Ongoing climate change has emerged as a major scientific challenge in the current century. Grassland ecosystems are considered net carbon (C) sinks to mitigate climate change. However, they are in turn, influenced by climate change and management practices, providing feedback to climate change via soil microbial community and biogeochemical fluxes. In this thesis, I examined the impact of warming, altered precipitation, and defoliation on soil microbial composition and function, C and N dynamics, and fluxes in soil respiration (CO₂), nitrous oxide (N₂O) and methane (CH₄), together with other belowground ecosystem functions, within two ecosites in a northern native temperate grassland in central Alberta, Canada, over a two-year period.

Fungi-to-bacteria ratio was not affected by climatic parameters or defoliation, indicating a high degree of resistance in the below ground community to the treatments imposed. However, C substrate utilization was influenced by warming and defoliation, as was soil microbial biomass. In contrast, soil respiration (or C loss) was not. Soil respiration acclimatized rather quickly to warming, and N₂O and CH₄ effluxes showed minor responses to warming at both ecosites, regardless of defoliation. These results suggest warming is unlikely to lead to positive climate change feedback due to soil-based responses, regardless of ongoing land use. However, altered precipitation (± 50%) demonstrated greater impacts on C and N fluxes relative to warming and defoliation. Increased precipitation stimulated soil C loss to the atmosphere, potentially generating positive feedback for climatic warming in this northern temperate grassland.
Acknowledgements

I owe my deepest gratitude to my supervisor, Scott X. Chang, whose encouragement, guidance and support from the initial to the final level added considerably to my graduate experience. Working with Scott has been the most dynamic and creative experience of my life. I would also extend my sincerest thanks to James F. Cahill, Jr. as my co-supervisor for his perpetual energy and enthusiasm in research, which had motivated me during the course of my PhD. His constructive criticism and valuable advice helped me greatly at all stages. My gratitude is also extended to my committee member, Edward W. Bork, for his excellent advice on research and scientific writing throughout this program.

I am indebted to my lab partners, Zheng Shi, Tesfay Teklay, Sarah Pattison, Leslie Yasul, Xiao Tan, Craig Neufeld, Kangho Jung, and Yang Lin, for collaborations on analytical methods, and they listened and critiqued my ideas, and edited my manuscripts, and to our lab coordinator, Pak Chow, for his excellent suggestions on analytical methods.

It is a pleasure to thank those who provided extensive assistance in the field and lab. Bryon Shore, Eliza S. Deutsch, Kerilynn Mercier, Megan Rice, Tara Stieglitz and others, too numerous to mention individually, provided tremendous help to me.

My heartfelt respect and special thanks must go to my beloved husband, mother, parents-in-laws, sisters, sister-in-law, all other relatives back home, and my roommates, friends whose sublime blessing, love, sacrifice, and inspiration helped me keep my sanity in my voyage to learning.
Finally and most appreciatively, I would like to thank the Ministry of Sciences, Research, and Technology (MSRT) of Iran for the financial support in the form of graduate scholarship. My thesis research was also supported by the University of Alberta- Department of Agriculture, Food, and Nutritional Sciences, Natural Sciences and Engineering Research Council of Canada (NSERC), BIOCAP Canada Foundation, and Alberta Sustainable Resource Development - Public Lands and Forest Division.
Table of Contents

Chapter 1. Introduction, background and research overview

1. Introduction ... 1

2. Background ... 4
 2.1. Two-way linkage between climatic and biogeochemical cycles 4
 2.2. Linkage between grazing strategies and biogeochemical cycles 8
 2.3. Interplay of grazing strategies and climatic parameters in biogeochemical cycles ... 10

3. Research Overview .. 10
 3.1. The current uncertainties in the impacts of climate change in rangeland ecosystems .. 10
 3.2. Study Site .. 15
 3.3. Objectives ... 18

Literature Cited ... 20

Chapter 2. Limited Impacts of Experimental Warming and Defoliation on Short-Term Carbon and Nitrogen Dynamics in a Northern Temperate Grassland

1. Introduction ... 44

2. Materials and Methods .. 46
 2.1. Site Description .. 46
 2.2. Experimental Design .. 47
 2.3. Soil Sampling and Biochemical Analysis .. 49
 2.4. Soil Greenhouse Gas Emissions ... 50
 2.5. Statistical Analysis ... 50

3. Results ... 51
 3.1. Soil Temperature and Gravimetric Moisture Content 51
Chapter 3. Soil Microbial Community Changes in Response to Warming and Defoliation in a Northern Temperate Grassland

1. Introduction ... 80
2. Materials and Methods .. 83
 2.1. Site Description .. 83
 2.2. Experimental Design .. 84
 2.3. Soil Sampling .. 85
 2.4. Soil Microbial Community Structure ... 85
 2.5. Soil Microbial Community Function .. 86
 2.6. Statistical Analysis ... 86
3. Results ... 88
 3.1. Soil Microbial Community Function ... 88
 3.2. Soil Microbial Community Structure ... 90
4. Discussion .. 91
 4.1. Soil Microbial Physiological Function ... 91
 4.2. Soil Microbial Community Structure ... 94
5. Conclusions ... 97

Literature Cited ... 98

Chapter 4. Effects of Climate Change and Defoliation on Soil Carbon and Nitrogen in a Native Grassland .. 114

1. Introduction ... 114

2. Material and Methods .. 116
 2.1. Site Description .. 116
 2.2. Experimental Design .. 117
 2.3. Soil Sampling and Microbial Analysis ... 118
 2.4. Soil Greenhouse Gas Emission ... 120
 2.5. Statistical Analysis ... 121

3. Results ... 122
 3.1. Soil Moisture Content and Temperature .. 122
 3.2. Soil Greenhouse Gas Efflux .. 122
 3.3. Soil Microbial Biomass Carbon and Nitrogen 124
 3.4. Soil Dissolved Organic Carbon and Nitrogen 125

4. Discussion .. 125
 4.1. Fluxes of Soil Carbon ... 125
 4.2. Fluxes of Soil Nitrogen ... 128
 4.3. Relationships between Soil Carbon and Nitrogen Fluxes 131

5. Conclusions ... 132

Literature Cited ... 134

Chapter 5. Soil Microbial Community Structure and Function in Response to Climate Change and Defoliation in a Temperate Grassland in Alberta 155

1. Introduction ... 155

2. Material and Methods .. 157
2.1. Site Description .. 157
2.2. Experimental Design .. 158
2.3. Soil Sampling ... 159
2.3. Soil Microbial Community Structure ... 159
2.4. Soil Microbial Physiological Function ... 161
2.5. Statistical Analysis ... 162
3. Results ... 164
 3.1. Soil Microbial Physiological Function ... 164
4. Discussion .. 168
 4.1. Soil Microbial Physiological Function ... 168
 4.2. Soil Microbial Community Structure ... 170
5. Conclusions ... 174
 Literature Cited .. 175

Chapter 6. Synthesis and Conclusions .. 191
 1. Soil Microbial and Biogeochemical Responses to Climate Change and
 Grazing Management .. 191
 2. Ecosystem Feedback on Global Climate Change .. 196
 3. Management Implications and Future Research ... 198
 Literature Cited: .. 201
List of Tables

Table 1-1. Summary of previous studies linking soil biogeochemical variables in response to climatic parameters across various grassland ecosystems 34

Table 1-2. Summary of studies examining soil biogeochemical variables in response to grazing and defoliation strategies across various grassland ecosystems. ... 38

Table 2-1. Summary of ANOVA analysis results for soil C and N fluxes in the deep soil layer (5-15 cm) during the 2006 and 2007 growing seasons 74

Table 2-2. Summary of ANOVA analysis results for temporal changes in soil C and N fluxes throughout the 2006 and 2007 growing seasons at both the 0-5 and 5-15 cm soil depth. .. 75

Table 2-3. Summary of ANOVA analysis results for soil greenhouse gas effluxes during the 2006 and 2007 growing seasons ... 76

Table 3-1. Summary of signature microbial PLFA indicators examined 107

Table 3-2. Pearson correlation (r) results between the relative abundance of microbes (PLFAs), fungi or bacteria, with various microbial taxonomic groups and soil or plant properties as determined by the NMS ordination in 2008. 108

Table 3-3. Summary of ANOVA analysis results for metabolic potential (AWCD) and substrate utilization by soil fungi in 2007 109

Table 3-4. Summary ANOVA results for the evaluation of microbial structural and functional diversity based on Shannon diversity indices for each of 3 assessment methods. ... 110

Table 3-5. Multiple regression analysis of microbial structural and functional diversity responses in relation to various soil properties 111

Table 4-1. Repeated measure analysis for soil temperature (T °C) and volumetric water content (VWC%). ... 142

Table 4-2. Repeated measure analysis of soil greenhouse gas emission 144

Table 4-3. Multiple regression analysis for soil greenhouse gas emissions with soil and plant properties .. 146

Table 4-4. Repeated measure analysis for microbial biomass and dissolved organic materials .. 147
Table 5-1. Analysis of variance for the microbial structural and functional Shannon diversity index in the PLFA and CLPP datasets......................... 185

Table 5-2. Pearson correlation (r) of explanatory variables with ordination axes... 186
List of Figures

Figure 1- 1. A conceptual model to show climate-grazing consequences on soil biogeochemical and microbial process ... 4

Figure 1- 2. Measured daily soil (a) temperature (b) volumetric water content (VWC) at 0-5cm soil depth as influenced by warming treatment on July 15th, 2007 in ecosite B.. 41

Figure 1- 3. Measured daily soil (a) temperature (b) volumetric water content (VWC) at 0-5cm soil depth as influenced by precipitation treatment on July 15th, 2007 in ecosite B... 42

Figure 1- 4. Measured daily soil (a) temperature (b) volumetric water content (VWC) at 0-5cm soil depth as influenced by defoliation treatment on July 15th, 2007 in ecosite B.. 43

Figure 2- 1. Defoliation and warming effects on average daily soil surface temperature for the 2006 (left) and 2007 (right) growing seasons 77

Figure 2- 2. Defoliation and warming effects on monthly (a) soil surface temperature and soil gravimetric soil moisture content in the (b) 0-5 cm depth, and (c) the 5-15 cm soil depth for the 2006 and 2007 growing seasons.......... 78

Figure 2- 3. Defoliation and warming effects on monthly soil greenhouse gas emissions of (a) carbon dioxide (CO2) in 2006 and (b) methane (CH4) in both the 2006 and 2007 growing seasons. ... 79

Figure 3- 1. Warming and defoliation effects on bacterial physiological function on (a) polymers in 2006 (b) amino acids in 2006, and (c) carbohydrates in 2007. ... 112

Figure 3- 2. Warming and defoliation effects on fungal physiological function across various substrate types and metabolic potential (AWCD).................. 113

Figure 4- 1. Defoliation, precipitation and warming effects on average daily soil temperature a) average daily soil temperature at 0-5 cm soil depth in 2007, b) average daily soil temperature at 0-5 cm soil depth in 2008, c) average daily soil temperature at 5-20 cm soil depth in 2007, d) average daily soil temperature at 5-20 cm soil depth in 2008.. 149

Figure 4- 2. Precipitation effects on average daily soil volumetric water content at 0-5 cm and 5-20 cm soil depths in 2008 ... 150
Figure 4-3. Precipitation and warming effects on soil carbon dioxide efflux in 2007 .. 151

Figure 4-4. Rate of soil carbon dioxide efflux as a function of litter quantity in a) 2007, b) 2008 .. 152

Figure 4-5. Defoliation, precipitation and warming effects on soil methane efflux in the 2007 and 2008 growing seasons (a) Soil methane efflux at high intensity defoliation, (b) Soil methane efflux at low intensity defoliation, (c) Soil methane efflux at no defoliation .. 153

Figure 4-6. Precipitation and defoliation effects on soil microbial biomass at 0-5 cm soil depth in 2008, a) soil microbial biomass carbon, b) soil microbial biomass nitrogen ... 154

Figure 5-1. NMS ordination of PLFA relative abundance by warming treatment in 2008. Vectors are based on summed abundance of specific taxonomic PLFAs and explanatory variables ... 187

Figure 5-2. Percentage of relative abundance of PLFA signature of a) bacteria, b) fungi, c) actinomycete as influenced by warming and defoliation interaction in 2008 ... 188

Figure 5-3. Percentage of relative abundance of PLFA signature of actinomycete as influenced by precipitation and defoliation interaction in 2008 ... 189

Figure 5-4. Precipitation and warming interactive effects on microbial structural diversity in 2008 ... 190
Chapter 1 Introduction, background and research overview

Introduction

"With current climate change mitigation policies and related sustainable development practices, global GHG emissions will continue to grow over the next few decades. For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Continued GHG emissions at or above current rates would cause further warming and induce many changes in the global climate system during the 21st century that would very likely be larger than those observed during the 20th century."

~IPCC (2007)

While the original concerns over climate change targeted the North Atlantic, climate change has now become a global issue with increases in global average temperature evident worldwide (Biello, 2007). Associated with temperature changes are variation in precipitation pattern. Evidence for precipitation increases (eastern part of North and South America, northern Europe and northern and central Asia) and decreases (subtropical land region) are evident in various regions of the globe (IPCC, 2007). Warming may cause change in precipitation via two basic physical mechanisms: (i) warmer air is capable of holding greater amount of moisture, and (ii) warmer weather leads to greater evaporation and associated drying of the land surface (Easterling et al., 2000; Huntington, 2006).

Today, one of the main concerns is the consequence of climate change both locally and globally. To reduce the rate of CO$_2$ increase in the atmosphere, global efforts are underway to develop mitigation strategies to both enhance potential sinks and decrease potential sources of greenhouse gases (CO$_2$, N$_2$O, CH$_4$) (IPCC,
One major strategy is to sequester atmospheric carbon dioxide (CO$_2$) into biomass and soil organic matter of terrestrial ecosystems (Izaurralde et al., 2001; IPCC, 2007).

Within the biosphere, rangeland ecosystems cover up to 80% of terrestrial lands (Lund, 2004), and hence hold significant potential to sequester atmospheric CO$_2$. Considering the fact that 20 to 73% of global rangelands have been degraded (Lund, 2007), the current rate of C sequestration of 0.5 Pg C year$^{-1}$ (Schlesinger, 1997) might be below the maximum potential of many ecosystems. Improved management of degraded rangelands would therefore enhance the rate of C sequestration globally, and thereby mitigate the effects of climate change (Schimel et al., 1990; Conant et al., 2001). Despite the importance of rangelands, their role in C sequestration has been overlooked relative to studies in forested areas, leaving great uncertainty about the C storage potential in rangeland ecosystems.

Rates of soil C sequestration in rangeland ecosystems are sensitive to both climate (Conant et al., 2001) and grazing management (Jones & Donnelly, 2004). As one of the most common management practices in rangeland ecosystems (Derner & Schuman, 2007), grazing is of crucial importance in C sequestration and in affecting soil C storage in such ecosystems (Bruce et al., 1999). However, grazing impacts are variable among ecosystems, and thus local research is needed to understand the relationship between grazing and C budgets. Therefore, understanding the impacts of grazing strategies on the potential for (and
limitations in) C sequestration within rangeland ecosystems under the context of climate change has scientific merit.

The soil’s capacity to sequester C is finite. In rangeland ecosystems, where nitrogen (N) often limits primary productivity (Derner & Schuman, 2007), N availability is one of the limitations to C sequestration (Reich et al., 2006). In addition, global C and N are known to co-cycle via biomass accumulation, decomposition, and storage (Asner et al., 1997). As a result, it is important to incorporate both C and N dynamics into climate change studies conducted within these ecosystems. More specifically, soil microbial processes and communities should be investigated as the soil microbial community drives biogeochemical cycles, particularly C and N cycling, as well as storage in the soil. Soil microbial properties such as size, activity and composition play key roles in nutrient cycling, carbon sequestration and in general, all biogeochemical reactions in the soil. Ultimately, the microbial community can reflect soil-plant responses to climate change and grazing management (Fig. 1-1). Consequently, predictions of global C sequestration, emerging land use policy, and routine public decisions on land management, are inextricably tied to the assemblage of both soil C and N dynamics and microbial communities found in rangeland ecosystems, as well as their response to climate change factors (e.g., warming and precipitation).
2. Background

2.1. Linkage between climatic and biogeochemical cycles

Based on existing field-based climate change studies, soil belowground functions such as C and N dynamics may regulate global climate change via the influence of end-products of greenhouse gas (GHG) emissions, known as “feedback” (Cao & Woodward, 1998). Feedback associated from climatic parameters on GHG emissions may accelerate or dampen global warming, respectively, creating positive or negative feedbacks. Increased CO$_2$ concentration

Figure 1-1. A conceptual model showing climate-grazing consequences on soil biogeochemical and microbial processes. The cause and effect relationship between soil C and N pools and turnover/transformation processes are indicated by arrows. Red colors indicate the treatments applied and the pathways they are likely to impact.
or environmental warming received early attention from researchers investigating the effects of climate change in natural ecosystems (Makarov, 1959; Bazzaz, 1990). Rustad et al. (2001) in a meta-analysis study of 32 research sites demonstrated that 2-9 years of experimental warming with the range of 0.3-6.0°C increased soil CO$_2$ emission by 20% (with a 95% confidence interval of 18-22%). Beier et al. (2008) found that warming also increased soil CO$_2$ respiration in shrublands. This implies that microbial aerobic respiration may be enhanced in a warmer climate within well drained soils due to the higher level of oxygen, in turn resulting in a net loss of C via CO$_2$, a process potentially enhances positive feedback under climatic warming (Foley & Ramankutty, 2004; Pendall et al., 2004). Changes in this large soil C flux at the global scope (e.g. 75×10^{15} gC/yr) can simultaneously affect C storage in the soil matrix (Schlesinger & Andrews, 2000), and hence the potential for C sequestration in the system.

In contrast, temperature sensitivity of soil CO$_2$ efflux may decline over time as observed by Luo et al. (2001) in a tall grass prairie and Strömgren (2001) in a boreal spruce stand. Regardless of whether it is acclimatization of soil microbial activity to climatic warming (Luo et al., 2001; Strömgren, 2001) or depletion of readily decomposable substrate (Kirschbaum, 2004) that is the cause of such observations, these phenomena may weaken the positive feedback to climatic warming. Inconsistent responses have also been observed in microbial responses to warming. While soil microorganisms serve to sequester carbon in the system (Bradford et al., 2002), they are in turn influenced by climatic parameters. Increased temperature may change the source of C utilization by the soil
microbial community towards either old or new carbon substrates (Zogg et al.,
1997; Andrews et al., 2000). Furthermore, soil microbial characteristics (e.g.
composition and function) also displayed contrasting responses to experimental
warming (e.g., Zhang et al., 2005; Rinnan et al., 2007; Frey et al., 2008; Rinnan
et al., 2009). For instance, warming shifted soil microbial community
composition towards dominance by bacteria in subarctic heath (Rinnan et al.,
2007; Frey et al., 2008) and dominance by fungi in tall grass prairie (Zhang et al.,
2005).

Contradictory responses of nitrogen dynamics to climatic warming have also
been reported. Rustad et al. (2001) reported an average increase of 46% (with a
95% confidence interval of 30-64%) in net N mineralization due to 0.3-6.0°C
warming during 2-9 years. In contrast, N mineralization was relatively
insensitive to experimental warming in the study by Beier et al. (2008). Wan et al.
(2005) found that net N mineralization increased under experimental warming in
the first year, but decreased during the second year of study. This change may be
caused by differences in site characteristics such as aboveground community
composition and available moisture. Moisture as well as vegetation composition
can directly impact nitrogen mineralization responses to soil warming (Shaw &
Harte, 2001).

Although the majority of previous global climate change studies have
emphasized warming, the effects of precipitation have been the focus in more
recent climate change studies (i.e., Weltzin et al., 2003). Precipitation and soil
water conditions influence photosynthesis, plant growth, and litter decomposition
(Coughenour & Chen, 1997), and as a result, change the potential for C sequestration in the system. Positive relationships between precipitation and soil CO$_2$ respiration (Wiant, 1967; Tylor et al., 2004), and N$_2$O emission (Xu et al., 2002) have been reported in several terrestrial systems. Based on this relationship, increases in the amount of precipitation may create positive feedback to global climate change via trace gas emissions. However, the prediction of feedback is difficult and dependent on the impacts of precipitation on various soil C and N pools. Precipitation regimes may influence total soil C and N pools (Walter, 2004) via changes in soil microbial biomass carbon (Singh et al., 2009), soil organic C (Wichern & Joergensen, 2009), decomposer community composition (Tylor et al., 2004), net N mineralization (Coughenour & Chen, 1997), and N nitrification (Wang et al., 2006). A summary of other research reporting on the impacts of climate change on soil parameters is provided in Table 1-1.

Asymmetrical responses of soil C and N pools to climatic parameters provide no straightforward prediction of C sequestration in rangeland ecosystems. Despite this, the facilitation of atmospheric C sequestration in rangeland ecosystems via modified land use management has been set as a future goal (Lal, 2004; Jones & Donnelly, 2004). Moreover, the breakdown between net sources and sinks of carbon in terrestrial ecosystems remains unclear (Foley & Ramankutty, 2004). Recent reviews have recommended a need to further understand biogeochemical cycles and soil microorganisms as underlying mechanisms for the potential to influence C sources or sinks in terrestrial ecosystems (Foley & Ramankutty, 2004; Pendall et al., 2004). Thus, in rangeland
ecosystems, it is fundamentally important that we understand the impacts of land use management (i.e., grazing strategies) on soil microbial communities as well as C and N dynamics under ongoing climate change.

2.2. Linkage between grazing strategies and biogeochemical cycles

Grazing strategies can influence plant communities in rangeland ecosystems. Inappropriate grazing such as high stocking rates can reduce desirable productive forage plants while increasing woody plants together with unpalatable grasses and forbs (Cingolani, 2005; Zhou et al., 2006). Carbon and nitrogen dynamics in rangeland ecosystems are regulated through plant tissue quality and quantity, as well as the intensity and nature of disturbance. Disturbances such as defoliation may have importance consequences on C and N flows at the plant-soil interface (McGill et al., 1986; Howe 1994), and hence determine the potential for C sequestration (Derner & Schuman, 2007). Thus far, varied effects of grazing or defoliation have been reported on microbial communities and nutrient cycling (Table 1-2).

Several studies have proposed biogeochemical cycling models with positive feedback of disturbances such as grazing in plant-soil nutrient flows in rangeland ecosystems (Wedin, 1995, 1996; Pastor & Cohen, 1997). There is some experimental evidence to support the grazing- or defoliation-positive outcomes on soil organic C (Shuman et al., 2002; Pineiro et al., 2009) and N availability (Seagle et al., 1992) in rangeland ecosystems. In a mixed grassland ecosystem, clipping caused an increase in soil microbial C: N ratio (Harris et al., 2008).