Effect of forages in crop rotations on soil carbon levels at the UofA Breton Plots

Miles Dyck
Department of Renewable Resources
University of Alberta
Acknowledgements

• Dick Puurveen, Manager, Breton Plots

• UofA Breton Plots Endowment and Donors. Canadian Fertilizer Institute.

• Jim Robertson, Bill McGill

• Previous Breton Plots Researchers
Welcome to The Breton Plots:
An Alberta Registered Historic Resource

A Research Site for Several
Medium- & Long-Term Field Experiments
Gray Luvisol

D. Brown Chernozem
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Bly/hay</td>
<td>Wheat(E)-Fallow</td>
<td>Hay-1</td>
<td>Hay-2</td>
<td>Wheat</td>
<td>Oats</td>
</tr>
<tr>
<td>1</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
</tr>
<tr>
<td>2</td>
<td>(Manure)</td>
<td>(Manure)</td>
<td>(Manure)</td>
<td>(Manure)</td>
<td>(Manure)</td>
<td>(Manure)</td>
</tr>
<tr>
<td>5</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
</tr>
<tr>
<td>6</td>
<td>Lime</td>
<td>Lime</td>
<td>Lime</td>
<td>Lime</td>
<td>Lime</td>
<td>Lime</td>
</tr>
<tr>
<td>7</td>
<td>50-22-46-0</td>
<td>90-22-46-0</td>
<td>0-22-46-0</td>
<td>0-22-46-0</td>
<td>50-22-46-0</td>
<td>75-22-46-0</td>
</tr>
<tr>
<td>10</td>
<td>50-22-0-20</td>
<td>90-22-0-20</td>
<td>0-22-0-20</td>
<td>0-22-0-20</td>
<td>50-22-0-20</td>
<td>75-22-0-20</td>
</tr>
<tr>
<td>11</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
<td>Check</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East half Classical = Limed; Classical Rotation Sequence: Wheat- Oats -Barley/Hay-Hay-Hay-Hay
Hendrigan Rotation Sequence: Barley-Barley-Fababeans-Barley-Barley/Hay-Hay-Hay-Hay
CG=Continuous Grain; CF=Continuous Fescue; m=manure

Rates expressed as elemental N-P-K-S (kg/ha)
Perennials in rotations

• Classial Plots: *Alfalfa-Brome*
 – year 4 and 5 of 5-year Wheat-Oats-Barley-Hay-Hay (WOBHH) rotation
 – year 3 Barley under-seeded to Alfalfa-Brome
 – ploughed under after year 5 harvest

• Hendrigan Plots
 – Hendrigan rotation: continuous *creeping red fescue, tall fescue and white “Dutch” clover.*
 – 8-year cereal-cereal-fababeans-cereal-cereal-hay-hay-hay-hay
 • *alfalfa-brome hay*
C sequestration in WOBHH

• NPKS \rightarrow 0.0135 % yr$^{-1}$ \sim 0.28 Mg C ha$^{-1}$ yr$^{-1}$
• NPK \rightarrow 0.0084 % yr$^{-1}$ \sim 0.18 Mg C ha$^{-1}$ yr$^{-1}$

• don’t have reliable estimates for CF, CW, and Agroecological rotation, but we have archived samples from 1980, 2003, 2008, 2013
2013, 2014 Growing Season cumulative N_2O emissions

$r = 0.7; P<0.01$
discussion

• source of N$_2$O fluxes include fertilizers, biologically fixed N, previous crop residues

• Farrell et al. (2014)* → more N$_2$O from crop residues than from fertilizer (lab incubation)

• including perennials in rotations (2 – 5 years) increases soil carbon, but requires intermittent disturbance – stimulates nitrification and N$_2$O emissions

discussion cont’d

• may not be the same relationship between total soil carbon and N₂O emissions in “permanent” perennial cover and/or other soil types. If there is a land use change in the future, there is potential for increase N₂O emissions at that time which needs to be included in the C balance

• more efficient nutrient cycling at Breton (Gray Luvisol) compared to Ellerslie (Black Chernozem)
 – twice as much C and N mineralization per total soil C and N in Breton soil compared to Ellerslie in a 10-day incubation (Rutherford and Juma, 1989ab*)
 – “Breton microbes are lean and mean; Ellerslie microbes are fat and lazy” (Tom Goddard)

WOBHH soil C balance

• 0.28 Mg C ha\(^{-1}\) yr\(^{-1}\) = 1.0 Mg CO\(_2\) ha\(^{-1}\) yr\(^{-1}\) (Maybe some methane?)

• 0.003 Mg N\(_2\)O ha\(^{-1}\) yr\(^{-1}\) or 3 kg N\(_2\)O ha\(^{-1}\) yr\(^{-1}\) would offset this sequestration.

• cumulative growing season N\(_2\)O flux in NPKS from WOBHH is 2.5 kg N\(_2\)O ha\(^{-1}\) yr\(^{-1}\)

• more N\(_2\)O is released during freezing and thawing.
Conclusions

• continuous forage had greatest Soil C levels after 30 years

• soil still sequestering C after 80 years of agriculture in some treatments of the Breton Classical plots, but this may be offset by increased N$_2$O emissions.

• N$_2$O fluxes need to be considered in C balance of mixed annual-perennial and permanent perennial systems (cradle to grave)